期刊论文详细信息
EBioMedicine 卷:57
Combining imaging- and gene-based hypoxia biomarkers in cervical cancer improves prediction of chemoradiotherapy failure independent of intratumour heterogeneity
Tiril Hillestad1  Heidi Lyng2  Eva-Katrine Aarnes3  Eirik Malinen4  Tord Hompland5  Christina S. Fjeldbo5  Clara-Cecilie Günther5  Gunnar B. Kristensen6 
[1] Department of Core Facilities, Norwegian Radium Hospital, Oslo University Hospital, Ullernchausseen 70, 0379 Oslo, Norway;
[2] Institute for Cancer Genetics and Informatics, Norwegian Radium Hospital, Oslo University Hospital, Ullernchausseen 70, 0379 Oslo, Norway;
[3] Department of Gynaecologic Oncology, Norwegian Radium Hospital, Oslo University Hospital, Ullernchausseen 70, 0379 Oslo, Norway;
[4] Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Ullernchausseen 70, 0379 Oslo, Norway;
[5] Norwegian Computing Center, Gaustadalléen 23A, 0373 Oslo, Norway;
关键词: Prognostic biomarker;    Medical imaging;    Gene expression signature;    Hypoxia;    Intratumour heterogeneity;    Cervical cancer;   
DOI  :  
来源: DOAJ
【 摘 要 】

Background: Emerging biomarkers from medical imaging or molecular characterization of tumour biopsies open up for combining the two and exploiting their synergy in treatment planning of cancer patients. We generated a paired data set of imaging- and gene-based hypoxia biomarkers in cervical cancer, appraised the influence of intratumour heterogeneity in patient classification, and investigated the benefit of combining the methodologies in prediction of chemoradiotherapy failure. Methods: Hypoxic fraction from dynamic contrast enhanced (DCE)-MR images and an expression signature of six hypoxia-responsive genes were assessed as imaging- and gene-based biomarker, respectively in 118 patients. Findings: Dichotomous biomarker cutoff to yield similar hypoxia status by imaging and genes was defined in 41 patients, and the association was validated in the remaining 77 patients. The two biomarkers classified 75% of 118 patients with the same hypoxia status, and inconsistent classification was not related to imaging-defined intratumour heterogeneity in hypoxia. Gene-based hypoxia was independent on tumour cell fraction in the biopsies and showed minor heterogeneity across multiple samples in 9 tumours. Combining imaging- and gene-based classification gave a significantly better prediction of PFS than one biomarker alone. A combined dichotomous biomarker optimized in 77 patients showed a large separation in PFS between more and less hypoxic tumours, and separated the remaining 41 patients with different PFS. The combined biomarker showed prognostic value together with tumour stage in multivariate analysis. Interpretation: Combining imaging- and gene-based biomarkers may enable more precise and informative assessment of hypoxia-related chemoradiotherapy resistance in cervical cancer. Funding: Norwegian Cancer Society, South-Eastern Norway Regional Health Authority, and Norwegian Research Council.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次