期刊论文详细信息
Neural Regeneration Research 卷:13
Local inhibition of matrix metalloproteinases reduced M2 macrophage activity and impeded recovery in spinal cord transected rats after treatment with fibroblast growth factor-1 and nerve grafts
关键词: spinal cord injury;    fibroblast growth factor-1;    matrix metalloproteinase;    GM6001;    macrophage;   
DOI  :  10.4103/1673-5374.235302
来源: DOAJ
【 摘 要 】

Alternatively activated macrophages (M2 macrophages) promote central nervous system regeneration. Our previous study demonstrated that treatment with peripheral nerve grafts and fibroblast growth factor-1 recruited more M2 macrophages and improved partial functional recovery in spinal cord transected rats. The migration of macrophages is matrix metalloproteinase (MMP) dependent. We used a general inhibitor of MMPs to influence macrophage migration, and we examined the migration of macrophage populations and changes in spinal function. Rat spinal cords were completely transected at T8, and 5 mm of spinal cord was removed (group T). In group R, spinal cord-transected rats received treatment with fibroblast growth factor-1 and peripheral nerve grafts. In group RG, rats received the same treatment as group R with the addition of 200 μM GM6001 (an MMP inhibitor) to the fibrin mix. We found that MMP-9, but not MMP-2, was upregulated in the graft area of rats in group R. Local application of the MMP inhibitor resulted in a reduction in the ratio of arginase-1 (M2 macrophage subset)/inducible nitric oxide synthase-postive cells. When the MMP inhibitor was applied at 8 weeks postoperation, the partial functional recovery observed in group R was lost. This effect was accompanied by a decrease in brain-derived neurotrophic factor levels in the nerve graft. These results suggested that the arginase-1 positive population in spinal cord transected rats is a migratory cell population rather than the phenotypic conversion of early iNOS+ cells and that the migration of the arginase-1+ population could be regulated locally. Simultaneous application of MMP inhibitors or promotion of MMP activity for spinal cord injury needs to be considered if the coadministered treatment involves M2 recruitment.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次