期刊论文详细信息
Frontiers in Psychology 卷:5
Crossword Expertise as Recognitional Decision Making: An Artificial Intelligence Approach
Kejkaew eThanasuan1  Shane eMueller1 
[1] Michigan Technological University;
关键词: Expertise;    AI;    Cognitive Modeling;    recognition-primed decision making;    crossword puzzles;   
DOI  :  10.3389/fpsyg.2014.01018
来源: DOAJ
【 摘 要 】

The skills required to solve crossword puzzles involve two important aspects of lexical memory: semantic information in the form of clues that indicate the meaning of the answer, and orthographic patterns that constrain the possibilities but may also provide hints to possible answers.Mueller and Thanasuan (2013) proposed a model accounting for the simple memory access processes involved in solving individual crossword clues, but expert solvers also bring additional skills and strategies to bear on solving complete puzzles.In this paper, we developed an computational model of crossword solving that incorporates strategic and other factors, and is capable of solving crossword puzzles in a human-like fashion, in order to understand the complete set of skills needed to solve a crossword puzzle. We compare our models to human expert and novice solvers to investigate how different strategic and structural factors in crossword play impact overall performance.Results reveal that expert crossword solving relies heavily on fluent semantic memory search and retrieval, which appear to allow experts to take better advantage of orthographic-route solutions, and experts employ strategies that enable them to use orthographic information.Furthermore, other processes central to traditional AI models (error correction and backtracking) appear to be of less importance for human players.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:3次