期刊论文详细信息
Journal of Inequalities and Applications | 卷:2017 |
Monotone and fast computation of Euler’s constant | |
Alberto Lekuona1  José A Adell1  | |
[1] Departamento de Métodos Estadísticos, Facultad de Ciencias, Universidad de Zaragoza; | |
关键词: Euler-Mascheroni constant; fast computation; infinite product; alternating zeta function; gamma process; | |
DOI : 10.1186/s13660-017-1507-8 | |
来源: DOAJ |
【 摘 要 】
Abstract We construct sequences of finite sums ( l ˜ n ) n ≥ 0 $(\tilde{l}_{n})_{n\geq 0}$ and ( u ˜ n ) n ≥ 0 $(\tilde{u}_{n})_{n\geq 0}$ converging increasingly and decreasingly, respectively, to the Euler-Mascheroni constant γ at the geometric rate 1/2. Such sequences are easy to compute and satisfy complete monotonicity-type properties. As a consequence, we obtain an infinite product representation for 2 γ $2^{\gamma }$ converging in a monotone and fast way at the same time. We use a probabilistic approach based on a differentiation formula for the gamma process.
【 授权许可】
Unknown