Frontiers in Water | 卷:3 |
Assimilation of Cosmogenic Neutron Counts for Improved Soil Moisture Prediction in a Distributed Land Surface Model | |
Harrie-Jan Hendricks Franssen1  Amol Patil2  Harald Kunstmann3  Benjamin Fersch3  | |
[1] Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany; | |
[2] Institute of Geography, University of Augsburg, Augsburg, Germany; | |
[3] Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany; | |
关键词: cosmic-ray neutron sensing; ensemble adjustment Kalman filter; DART; soil moisture; data assimilation; land surface modeling; | |
DOI : 10.3389/frwa.2021.729592 | |
来源: DOAJ |
【 摘 要 】
Cosmic-Ray Neutron Sensing (CRNS) offers a non-invasive method for estimating soil moisture at the field scale, in our case a few tens of hectares. The current study uses the Ensemble Adjustment Kalman Filter (EAKF) to assimilate neutron counts observed at four locations within a 655 km2 pre-alpine river catchment into the Noah-MP land surface model (LSM) to improve soil moisture simulations and to optimize model parameters. The model runs with 100 m spatial resolution and uses the EU-SoilHydroGrids soil map along with the Mualem–van Genuchten soil water retention functions. Using the state estimation (ST) and joint state–parameter estimation (STP) technique, soil moisture states and model parameters controlling infiltration and evaporation rates were optimized, respectively. The added value of assimilation was evaluated for local and regional impacts using independent root zone soil moisture observations. The results show that during the assimilation period both ST and STP significantly improved the simulated soil moisture around the neutron sensors locations with improvements of the root mean square errors between 60 and 62% for ST and 55–66% for STP. STP could further enhance the model performance for the validation period at assimilation locations, mainly by reducing the Bias. Nevertheless, due to a lack of convergence of calculated parameters and a shorter evaluation period, performance during the validation phase degraded at a site further away from the assimilation locations. The comparison of modeled soil moisture with field-scale spatial patterns of a dense network of CRNS observations showed that STP helped to improve the average wetness conditions (reduction of spatial Bias from –0.038 cm3 cm−3 to –0.012 cm3 cm−3) for the validation period. However, the assimilation of neutron counts from only four stations showed limited success in enhancing the field-scale soil moisture patterns.
【 授权许可】
Unknown