期刊论文详细信息
Electronic Journal of Differential Equations 卷:2019
Bifurcation from the first eigenvalue of the p-Laplacian with nonlinear boundary condition
Liamidi A. Leadi1  Pascaline Nshimirimana1  Mabel Cuesta2 
[1] Univ. d'Abomey-Calavi, Porto-Novo, Benin ;
[2] Univ. du Littoral Cote d'Opale, Calais, France ;
关键词: Bifurcation theory;    topological degree;    $p$-Laplacian;    elliptic problem;    nonlinear boundary condition;    maximum and anti-maximum principles;   
DOI  :  
来源: DOAJ
【 摘 要 】

We consider the problem $$\displaylines{ \Delta_{p}u =|u|^{p-2}u \quad\text{in }\Omega, \cr |\nabla u|^{p-2}\frac{\partial u}{\partial \nu}=\lambda|u|^{p-2}u + g(\lambda,x,u) \quad\text{on }\partial\Omega, }$$ where $\Omega$ is a bounded domain of $\mathbb{R}^{N}$ with smooth boundary, $N\geq 2$, and $\Delta_p$ denotes the p-Laplacian operator. We give sufficient conditions for the existence of continua of solutions bifurcating from both zero and infinity at the principal eigenvalue of p-Laplacian with nonlinear boundary conditions. We also prove that those continua split on two, one containing strictly positive and the other containing strictly negative solutions. As an application we deduce results on anti-maximum and maximum principles for the p-Laplacian operator with nonlinear boundary conditions.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:2次