| Materials & Design | 卷:210 |
| Improvement of interfacial compatibility of SiCf/Ti-6Al-4V composites by applying fiber coating and heat treatment | |
| Yanqing Yang1  Guanghai Feng2  | |
| [1] Corresponding author.; | |
| [2] School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an 710075, PR China; | |
| 关键词: Titanium matrix composites; SiC fiber; Fiber coating; Interfacial characteristics; Interfacial compatibility; | |
| DOI : | |
| 来源: DOAJ | |
【 摘 要 】
A new approach to improving the interfacial compatibility of SiCf/Ti-6Al-4V composites by using fiber coating coupled with subsequent heat treatment was presented. The SiCf/Ti-6Al-4V composites with C-coated and C/Mo-coated fibers were prepared using the foil-fiber-foil method and subsequently heat treated in vacuum at 750 °C to obtain several kinds of the SiCf/Ti-6Al-4V composites with different interfacial characteristics. Interfacial microstructures of these composites were systematically characterized by means of scanning electron microscopy and X-ray energy dispersive spectroscopy to investigate the interfacial microstructure evolution and reaction dynamics. The effects of interfacial microstructures on interfacial mechanical properties were also investigated using thin-slice fiber push-out tests. The results show that the brittle interfacial reaction layer of TiC in the C-coated SiCf/Ti-6Al-4V composites was obviously thickened and some microvoids even formed near the matrix with increasing heat treatment durations, whereas the matrix adjacent to Mo coating in the C/Mo-coated SiCf/Ti-6Al-4V composites gradually transformed into a ductile β-Ti layer. Interfacial shear strengths of the C/Mo-coated composites were slightly increased with increasing the heat treatment time, while those of the C-coated composites were remarkably improved. Critical issues on modifying interfacial compatibility of the SiCf/Ti composites for further improving the mechanical behavior of the composites were discussed.
【 授权许可】
Unknown