期刊论文详细信息
Insects 卷:12
Proteomic Analyses Detect Higher Expression of C-Type Lectins in Imidacloprid-Resistant Colorado Potato Beetle Leptinotarsa decemlineata Say
KenK.-C. Yeung1  VictoriaC. Clarke1  Kristina Jurcic1  Gabrielle Hatten2  Yazel Tuncer2  IanM. Scott2 
[1] London Regional Proteomics Centre, Biochemistry, Western University, London ON N6A 5C1, Canada;
[2] London Research and Development Centre, Agriculture and Agri-Food Canada, London ON N5V 4T3, Canada;
关键词: proteomics;    insecticide resistance;    Colorado potato beetle;    detoxification enzymes;    C-type lectins;   
DOI  :  10.3390/insects12010003
来源: DOAJ
【 摘 要 】

The Colorado potato beetle (CPB) is one of the most adaptable insect pests to both plant toxins and synthetic insecticides. Resistance in CPB is reported for over 50 classes of insecticides, and mechanisms of insecticide-resistance include enhanced detoxification enzymes, ABC transporters and target site mutations. Adaptation to insecticides is also associated with changes in behaviour, energy metabolism and other physiological processes seemingly unrelated to resistance but partially explained through genomic analyses. In the present study, in place of genomics, we applied 2-dimensional (2-D) gel and mass spectrometry to investigate protein differences in abdominal and midgut tissue of insecticide-susceptible (S) and -resistant (R) CPB. The proteomic analyses measured constitutive differences in several proteins, but the highest match was identified as a C-type lectin (CTL), a component of innate immunity in insects. The constitutive expression of the CTL was greater in the multi-resistant (LI) strain, and the same spot was measured in both midgut and abdominal tissue. Exposure to the neonicotinoid insecticide, imidacloprid, increased the CTL spot found in the midgut but not in the abdominal tissue of the laboratory (Lab) strain. No increase in protein levels in the midgut tissue was observed in the LI or a field strain (NB) tolerant to neonicotinoids. With the exception of biopesticides, such as Bacillus thuringiensis (Bt), no previous studies have documented differences in the immune response by CTLs in insects exposed to synthetic insecticides or the fitness costs associated with expression levels of immune-related genes in insecticide-resistant strains. This study demonstrates again how CPB has been successful at adapting to insecticides, plant defenses as well as pathogens.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次