期刊论文详细信息
Cell Reports Medicine 卷:1
Tumor-Educated Platelet RNA for the Detection and (Pseudo)progression Monitoring of Glioblastoma
Adrienne Vancura1  Sjors G.J.G. in ‘t Veld2  Joep Killestein3  Cyra Leurs3  Pepijn Schellen3  Sander Idema3  Jihane Tannous3  R. Jonas A. Nilsson3  David P. Noske3  Edward Post3  Ann Hoeben3  Anna C. Navis3  Jip Ramaker4  Myron G. Best4  Heleen Verschueren5  François Rustenburg5  Nik Sol5  Farrah Mateen5  William P.J. Leenders5  W. Peter Vandertop5  Maud Tjerkstra5  Laurine E. Wedekind5  Philip C. de Witt Hamer5  Bastiaan Moraal5  Bauke Ylstra5  Jaap C. Reijneveld6  Kenn Zwaan6  Bakhos A. Tannous7  Thomas Wurdinger7  Pieter Wesseling8 
[1] Corresponding author;
[2] Department of Neurology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands;
[3] Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands;
[4] MS Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands;
[5] Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands;
[6] Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, MA, USA;
[7] Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, Amsterdam, the Netherlands;
关键词: tumor-educated platelets;    blood platelets;    liquid biopsies;    glioblastoma;    machine learning;    swarm intelligence;   
DOI  :  
来源: DOAJ
【 摘 要 】

Summary: Tumor-educated platelets (TEPs) are potential biomarkers for cancer diagnostics. We employ TEP-derived RNA panels, determined by swarm intelligence, to detect and monitor glioblastoma. We assessed specificity by comparing the spliced RNA profile of TEPs from glioblastoma patients with multiple sclerosis and brain metastasis patients (validation series, n = 157; accuracy, 80%; AUC, 0.81 [95% CI, 0.74–0.89; p < 0.001]). Second, analysis of patients with glioblastoma versus asymptomatic healthy controls in an independent validation series (n = 347) provided a detection accuracy of 95% and AUC of 0.97 (95% CI, 0.95–0.99; p < 0.001). Finally, we developed the digitalSWARM algorithm to improve monitoring of glioblastoma progression and demonstrate that the TEP tumor scores of individual glioblastoma patients represent tumor behavior and could be used to distinguish false positive progression from true progression (validation series, n = 20; accuracy, 85%; AUC, 0.86 [95% CI, 0.70–1.00; p < 0.012]). In conclusion, TEPs have potential as a minimally invasive biosource for blood-based diagnostics and monitoring of glioblastoma patients.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次