期刊论文详细信息
Journal of Computer Science and Technology 卷:17
Hybrid-Parallel Uncertainty Reduction Method Applied to Forest Fire Spread Prediction
Miguel Méndez Garabetti1  Graciela Verónica Gil Costa1  María Laura Tardivo2  Paola Caymes Scutari3  Germán BIanchini3 
[1] Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.;
[2] Departamento de Computación, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina;
[3] Laboratorio de Investigación en Cómputo Paralelo/Distribuido (LICPaD), Departamento de Ingeniería en Sistemas de Información, Facultad Regional Mendoza - Universidad Tecnológica Nacional.Mendoza, Argentina.;
关键词: hybrid metaheuristics;    differential evolution;    evolutionary algorithms;    fire prediction;    uncertainty reduction;   
DOI  :  
来源: DOAJ
【 摘 要 】

Fire behavior prediction can be a fundamental tool to reduce losses and damages in emergency situations. However, this process is often complex and affected by the existence of uncertainty. For this reason, from different areas of science, several methods and systems are developed and refined to reduce the effects of uncertainty In this paper we present the Hybrid Evolutionary-Statistical System with Island Model (HESS-IM). It is a hybrid uncertainty reduction method applied to forest fire spread prediction that combines the advantages of two evolutionary population metaheuristics: Evolutionary Algorithms and Differential Evolution. We evaluate the HESS-IM with three controlled fires scenarios, and we obtained favorable results compared to the previous methods in the literature.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:8次