| Polymers | 卷:12 |
| Innovative Incorporation of Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) as Hole Carrier Transport Layer and as Anode for Organic Solar Cells Performance Improvement | |
| Omar Jiménez-Sandoval1  Ricardo Corona-Sánchez2  Leon Hamui3  MariaElena Sánchez-Vergara3  Cecilio Álvarez-Toledano4  | |
| [1] Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Querétaro, Libramiento Norponiente 2000, Fracc. Real de Juriquilla, Querétaro 76230, Mexico; | |
| [2] Departamento de Química, Universidad Autónoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco 186, Col. Vicentina-Iztapalapa, Ciudad de México 09340, Mexico; | |
| [3] Facultad de Ingeniería, Universidad Anáhuac México, Avenida Universidad Anáhuac 46, Col. Lomas Anáhuac, Huixquilucan 52786, Estado de México, Mexico; | |
| [4] Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Ciudad de México 04510, Mexico; | |
| 关键词: PEDOT:PSS; Fischer carbene; thin film; optical gap; electrical properties; | |
| DOI : 10.3390/polym12122808 | |
| 来源: DOAJ | |
【 摘 要 】
In this work, we present a comparative study of benzoid poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) as electrode and as hole carrier transport layer (HTL) in the manufacture of organic photovoltaic devices using Fischer metal-carbene complexes. The performance of the different devices was evaluated for solar cell applications. Scanning electronic microscopy (SEM) and X-ray diffraction (XRD) were used to characterize the thin films that integrated the devices. A more ordered and crystallized active film microstructure is observed when using benzoid PEDOT:PSS as nucleation layer. The optical gap for both direct and indirect electronic transitions was evaluated from ultraviolet-visible spectroscopy data (UV-vis), as well as the absorption coefficient (α), and the values are in the range of 2.10–2.93 eV. Photovoltaic devices with conventional architecture, using two different chromium carbenes as active layers, were manufactured, and their electrical behavior was studied. The devices were irradiated with different wavelengths between the infrared and ultraviolet regions of the electromagnetic spectrum. Using the PEDOT:PSS film as hole carrier transport layer (HTL) decreases the slope on the ohmic and space charge limited current (SCLC) regions and eliminates the trap-charge limited current (T-CLC) mechanism. Furthermore, a saturation current of ~1.95 × 10−10 A and higher current values ~1.75 × 10−2 A at 4 V, ~4 orders in magnitude larger were observed. The PEDOT:PSS films as HTL in the devices reduced the injection barrier, thus showing a better performance than as anodes in this type of organic solar cells.
【 授权许可】
Unknown