期刊论文详细信息
Case Studies in Thermal Engineering 卷:27
Yearly performance of the photovoltaic active cooling system using the thermoelectric generator
N.A. Mahmoud1  W. Aboelsoud2  Mohamed Ezzat2  H. Metwally3 
[1]Ain Shams University, Faculty of Engineering, Cairo, Egypt
[2]|Ain Shams University, Faculty of Engineering, Cairo, Egypt
[3]|Corresponding author.
关键词: Photovoltaic panels;    Active cooling;    TEG;    Efficiency;    PV performance;   
DOI  :  
来源: DOAJ
【 摘 要 】
The PV panel absorbs solar irradiation flux on the surface. Part of the absorbed flux generates electricity, and a more significant amount converts into heat. Different methods are used to maintain photovoltaic at low temperatures. Heat is transferred in all heat transfer forms conduction, convection, and radiation. A photovoltaic panel model is developed in the current study that consists of an active cooling technique. Active cooling systems developed model uses domestic water as a thermoelectric generator's heat sink, and the photovoltaic temperature is a thermoelectric generator heat source. The proposed system depends on domestic water flow from the storage tank to the domestic building system at ambient temperature and under gravity flows and no extra power cost in the water flow process. The active cooling process keeps the PV panel at a steady temperature for almost 2 h and decreases the PV panel temperature in Winter, Spring, and Summer to 295K, 302K, and 311K, respectively, which is sufficient. The results also show the panel efficiency and electrical power generation enhancement by 4% and 20%, respectively, when the efficiency enhancement was steady for 6 h even under transient irradiation flux.
【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次