| Computation | 卷:6 |
| Immersed Boundary Method Application as a Way to Deal with the Three-Dimensional Sudden Contraction | |
| Christopher Micallef1  JonatasE. Borges2  ElieL. M. Padilla3  Marcos Lourenço4  | |
| [1] Department of Mechanical Engineering, University of Malta, Msida, MSD 2080, Malta; | |
| [2] School of Food Engineering, Federal University of Mato Grosso, Cuiabá 78600-000, Brazil; | |
| [3] School of Mechanical Engineering, Federal University of Uberlândia, Uberlândia 38400-902, Brazil; | |
| [4] School of Mechanical Engineering, Technologic Federal University of Parana, Apucarana 86300-000, Brazil; | |
| 关键词: computational fluid dynamics; immersed boundary method; sudden contraction; | |
| DOI : 10.3390/computation6030050 | |
| 来源: DOAJ | |
【 摘 要 】
The immersed boundary method has attracted considerable interest in the last few years. The method is a computational cheap alternative to represent the boundaries of a geometrically complex body, while using a cartesian mesh, by adding a force term in the momentum equation. The advantage of this is that bodies of any arbitrary shape can be added without grid restructuring, a procedure which is often time-consuming. Furthermore, multiple bodies may be simulated, and relative motion of those bodies may be accomplished at reasonable computational cost. The numerical platform in development has a parallel distributed-memory implementation to solve the Navier-Stokes equations. The Finite Volume Method is used in the spatial discretization where the diffusive terms are approximated by the central difference method. The temporal discretization is accomplished using the Adams-Bashforth method. Both temporal and spatial discretizations are second-order accurate. The Velocity-pressure coupling is done using the fractional-step method of two steps. The present work applies the immersed boundary method to simulate a Newtonian laminar flow through a three-dimensional sudden contraction. Results are compared to published literature. Flow patterns upstream and downstream of the contraction region are analysed at various Reynolds number in the range 44 ≤ Re D≤ 993 for the large tube and 87 ≤ Re D≤ 1956 for the small tube, considerating a contraction ratio of β = 1.97. Comparison between numerical and experimental velocity profiles has shown good agreement.
【 授权许可】
Unknown