Open Mathematics | 卷:18 |
Revisiting the sub- and super-solution method for the classical radial solutions of the mean curvature equation | |
Obersnel Franco1  Omari Pierpaolo1  | |
[1] Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, via A. Valerio 12/1, 34127 Trieste, Italy; | |
关键词: prescribed mean curvature equation; dirichlet; neumann; robin boundary conditions; radial symmetry; classical solution; sub- and super-solutions; 35j62; 35j93; 35j25; 34c25; | |
DOI : 10.1515/math-2020-0097 | |
来源: DOAJ |
【 摘 要 】
This paper focuses on the existence and the multiplicity of classical radially symmetric solutions of the mean curvature problem:−div∇v1+|∇v|2=f(x,v,∇v)inΩ,a0v+a1∂v∂ν=0on∂Ω,\left\{\begin{array}{ll}-\text{div}\left(\frac{\nabla v}{\sqrt{1+|\nabla v{|}^{2}}}\right)=f(x,v,\nabla v)& \text{in}\hspace{.5em}\text{Ω},\\ {a}_{0}v+{a}_{1}\tfrac{\partial v}{\partial \nu }=0& \text{on}\hspace{.5em}\partial \text{Ω},\end{array}\right.with Ω\text{Ω} an open ball in ℝN{{\mathbb{R}}}^{N}, in the presence of one or more couples of sub- and super-solutions, satisfying or not satisfying the standard ordering condition. The novel assumptions introduced on the function f allow us to complement or improve several results in the literature.
【 授权许可】
Unknown