期刊论文详细信息
Chemical and Biological Technologies in Agriculture 卷:8
Effect of biochar addition on legacy phosphorus availability in long-term cultivated arid soil
Noura Ziadi1  Khaled D. Alotaibi2  Melissa Arcand3 
[1] Agriculture and Agri-Food Canada, Quebec Research and Development Centre;
[2] Department of Soil Science, King Saud University;
[3] Department of Soil Science, University of Saskatchewan, Saskatoon;
关键词: Feedstock;    Pyrolysis temperature;    Alkaline soil;    Phosphorus transformations;    Phosphorus fractions;   
DOI  :  10.1186/s40538-021-00249-0
来源: DOAJ
【 摘 要 】

Abstract Background Continuous application of phosphorus (P) nutrient in association with its low recovery results in large amounts of P being accumulated in soil in different forms. Use of biochar can be a possible means to mobilize soil legacy P and increase its bioavailability. Therefore, the aim of this study was to identify the potential impact of a range of biochar types on P fractions in a long-term cultivated arid soil with high legacy P content. Methodology The soil was treated with biochar produced from four feedstock sources (BFS): sewage sludge (SSB), olive mill pomace (OPB), chicken manure (CMB), and date palm residues (DRB) pyrolyzed at 300, 500, or 700 °C in addition to an untreated control. The soil biochar mixture was incubated for 1 month followed by soil P fractionations using sequential chemical extraction to separate soil P into: labile (Resin-Pi, NaHCO3-Pi, NaHCO3-Po), moderately labile (NaOH-Pi, NaOH-Po), and non-labile (HCl-Pi and Residual-P) pools. Results Biochar addition clearly influenced most of the soil P fractions; however, the extent of this effect greatly varied depending on BFS and pyrolysis temperature (PT). The most evident biochar impact was observed with labile P pool, with the greatest increase being observed in NaHCO3-Pi fraction in most biochar treatments. Irrespective of PT, SSB and CMB were the most effective biochar type in increasing labile inorganic P; the SSB and CMB increased Resin-Pi by 77 and 206% and NaHCO3-Pi by 200 and 188%, respectively. In contrast, DRB made no changes in any P fraction. Differences in effects of biochar types on labile P is presumably related to the higher content of P in biowaste-based biochar compared to plant-based biochar which have much lower P content. The SSB, CMB, and OPB produced at low temperature reduced HCl-Pi content, indicating that these biochars may have stimulated organic matter decomposition and thereby dissolution of non-labile Ca-associated P to labile P forms. Conclusion Overall, biochar addition appeared to be an effective approach in enhancing legacy P availability in arid soil. However, further studies are necessary to verify these findings in the presence of plant and for a longer period. Graphic abstract

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次