Insects | 卷:12 |
The Potential Global Distribution of Sirex juvencus (Hymenoptera: Siricidae) under Near Current and Future Climatic Conditions as Predicted by the Maximum Entropy Model | |
Tai Gao1  Juan Shi1  | |
[1] Sino-France Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University, Beijing 100083, China; | |
关键词: Sirex wood wasp; MaxEnt; potentially suitable area; climate change; CMIP6; co-infestation; | |
DOI : 10.3390/insects12030222 | |
来源: DOAJ |
【 摘 要 】
Wood wasp species in the genus Sirex are known pests of forestry. They cause significant economic losses due to their impacts on plant health and wood quality. S. juvencus (Hymenoptera: Siricidae), widely distributed in Asia, Europe, and North America, is known to negatively impact forestry, infesting Picea, Pinus, Larix, Abies, Cupressus, and Pseudotsuga species. This pest destroys plants by depositing eggs, mucus, and its obligate mutualistic fungus, Amylostereum areolatum. Its obligate mutualistic fungus is to provide nutrition for S. juvencus larva. Despite its extensive distribution range, little is known about which environmental variables significantly impact current and future distribution patterns of S. juvencus for pest control and monitoring. Here we used the maximum entropy model in conjunction with occurrence points of S. juvencus and environmental variables to predict the current and future global potential distribution of S. juvencus. We used the jackknife method and Pearson’s correlation analysis to select the environmental variables that influence the geographic distribution of S. juvencus, which resulted in the inclusion of the monthly average maximum temperature in February, the max temperature of warmest month, monthly average minimum temperature in July, monthly total precipitation in June, precipitation of the driest month, monthly total precipitation in September, and the temperature annual range. Temperature and precipitation are mainly likely to drive the distribution enabled by its obligate mutualistic fungus and the potential to co-infect with other Sirex species. The high temperature and low humidity influence S. juvencus eggs and larvae directly and indirectly via fungus-growth, which enables the larvae to survive. Furthermore, S. juvencus may increase its distribution to moderately suitable areas due to competition or dependency on other Sirex species during the infestation. Under the future climatic conditions, the highly suitable area increased by 32.79%, while the moderately suitable area, low suitable area, and unsuitable area increased by 28.14%, 3.30%, and 2.15%. Under climate changes, S. juvencus may spread in previously unsuitable areas rapidly.
【 授权许可】
Unknown