期刊论文详细信息
Frontiers in Chemistry 卷:8
Doping Lanthanide Nanocrystals With Non-lanthanide Ions to Simultaneously Enhance Up- and Down-Conversion Luminescence
Mingyuan Gao1  Lihong Jing2  Chunyan Liu2  Yi Hou2  Jiayi Huang3  Yingying Li3  Peng Xiao3  Haoran Ning3  Peisen Zhang3 
[1] Center for Molecular Imaging and Nuclear Medicine, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China;
[2] Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China;
[3] School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China;
关键词: non-lanthanide doping;    up- and down-conversion luminescence;    crystal field;    valence state effects;    rare-earth nanocrystals;    lanthanide emitters;   
DOI  :  10.3389/fchem.2020.00832
来源: DOAJ
【 摘 要 】

The rare-earth nanocrystals containing Er3+ emitters offer very promising tools for imaging applications, as they can not only exhibit up-conversion luminescence but also down-conversion luminescence in the second near-infrared window (NIR II). Doping non-lanthanide cations into host matrix was demonstrated to be an effective measure for improving the luminescence efficiency of Er3+ ions, while still awaiting in-depth investigations on the effects of dopants especially those with high valence states on the optical properties of lanthanide nanocrystals. To address this issue, tetravalent Zr4+ doped hexagonal NaGdF4:Yb,Er nanocrystals were prepared, and the enhancement effects of the Zr4+ doping level on both up-conversion luminescence in the visible window and down-conversion luminescence in NIR II window were investigated, with steady-state and transient luminescence spectroscopies. The key role of the local crystal field distortions around Er3+ emitters was elucidated in combination with the results based on both of Zr4+ and its lower valence counterparts, e.g., Sc3+, Mg2+, Mn2+. Univalent ions such as Li+ was utilized to substitute Na+ ion rather than Gd3+, and the synergistic effects of Zr4+ and Li+ ions by co-doping them into NaGdF4:Yb,Er nanocrystals were investigated toward optimal enhancement. Upon optimization, the up-conversion emission of co-doped NaGdF4:Yb,Er nanocrystals was enhanced by more than one order of magnitude compared with undoped nanocrystals. The current studies thus demonstrate that the local crystal field surrounding emitters is an effective parameter for manipulating the luminescence of lanthanide emitters.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次