期刊论文详细信息
IEEE Access 卷:5
EHAUPM: Efficient High Average-Utility Pattern Mining With Tighter Upper Bounds
Tzung-Pei Hong1  Jerry Chun-Wei Lin2  Shifeng Ren2  Philippe Fournier-Viger3 
[1] Department of Computer Science and Information Engineering, National University of Kaohsiung, Kaohsiung, Taiwan;
[2] School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China;
[3] School of Humanities and Social Sciences, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China;
关键词: High average-utility pattern;    tighter upper bounds;    utility mining;    pruning strategy;    data mining;   
DOI  :  10.1109/ACCESS.2017.2717438
来源: DOAJ
【 摘 要 】

High-utility itemset mining (HUIM) has become a popular data mining task, as it can reveal patterns that have a high-utility, contrarily to frequent pattern mining, which focuses on discovering frequent patterns. High average-utility itemset mining (HAUIM) is a variation of HUIM that provides an alternative measure, called the average utility, to select patterns by considering both their utilities and lengths. In the last decades, several algorithms have been developed to mine high average-utility itemsets (HAUIs). But most of them consume large amounts of memory and have long execution times, since they generally utilize the average-utility upper-bound (auub) model to overestimate the average utilities of itemsets. To improve the performance of HAUIM, this paper proposes two novel tighter upper-bound models as alternative to the traditional auub model for mining HAUIs. The looser upper-bound model considers the remaining-maximum utility in transactions to reduce the upper bound on the utilities of itemsets. The second upper-bound model ignores irrelevant items in transactions to further tighten the upper bound. Three pruning strategies are also designed to reduce the search space for mining HAUIs by a greater amount compared with the state-of-the-art HAUI-Miner algorithm. Experiments conducted on several benchmark data sets show that the designed algorithm integrating the two novel upper-bound models outperforms the traditional HAUI-Miner algorithm in terms of runtime, memory usage, number of join operations, and scalability.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次