Journal of Cotton Research | 卷:2 |
High-throughput phenotyping in cotton: a review | |
Glen L. RITCHIE1  Irish Lorraine B. PABUAYON1  Wenxuan GUO1  Yazhou SUN1  | |
[1] Department of Plant and Soil Science, Texas Tech Univ; | |
关键词: Cotton; High-throughput phenotyping; Remote sensing; Sensors; Spectral; Fluorescence; | |
DOI : 10.1186/s42397-019-0035-0 | |
来源: DOAJ |
【 摘 要 】
Abstract Recent technological advances in cotton (Gossypium hirsutum L.) phenotyping have offered tools to improve the efficiency of data collection and analysis. High-throughput phenotyping (HTP) is a non-destructive and rapid approach of monitoring and measuring multiple phenotypic traits related to the growth, yield, and adaptation to biotic or abiotic stress. Researchers have conducted extensive experiments on HTP and developed techniques including spectral, fluorescence, thermal, and three-dimensional imaging to measure the morphological, physiological, and pathological resistance traits of cotton. In addition, ground-based and aerial-based platforms were also developed to aid in the implementation of these HTP systems. This review paper highlights the techniques and recent developments for HTP in cotton, reviews the potential applications according to morphological and physiological traits of cotton, and compares the advantages and limitations of these HTP systems when used in cotton cropping systems. Overall, the use of HTP has generated many opportunities to accurately and efficiently measure and analyze diverse traits of cotton. However, because of its relative novelty, HTP has some limitations that constrains the ability to take full advantage of what it can offer. These challenges need to be addressed to increase the accuracy and utility of HTP, which can be done by integrating analytical techniques for big data and continuous advances in imaging.
【 授权许可】
Unknown