Parasites & Vectors | 卷:12 |
Anaplasma phagocytophilum evolves in geographical and biotic niches of vertebrates and ticks | |
Karolina Majerová1  Jan Votýpka1  Atle Mysterud2  Katsuhisa Takumi3  Hein Sprong3  Ryanne I. Jaarsma3  Relja Beck4  Gábor Földvári5  Agustín Estrada-Peña6  David Modrý7  Laura Tomassone8  Birger Hörnfeldt9  Frauke Ecke9  Reinard R. Everts10  Margit Groenevelt10  Jolianne M. Rijks11  Cornelia Silaghi12  Ivo Rudolf13  Maria Kazimirova14  | |
[1] Biology Centre, Institute of Parasitology, Czech Academy of Sciences; | |
[2] Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo; | |
[3] Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM); | |
[4] Department for Bacteriology and Parasitology, Croatian Veterinary Institute; | |
[5] Department of Parasitology and Zoology, University of Veterinary Medicine Budapest; | |
[6] Department of Parasitology, Faculty of Veterinary Medicine, University of Zaragoza; | |
[7] Department of Pathology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences; | |
[8] Department of Veterinary Sciences, University of Turin; | |
[9] Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences; | |
[10] Diergeneeskundig Centrum Zuid-Oost Drenthe; | |
[11] Dutch Wildlife Health Centre, Utrecht University; | |
[12] Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health; | |
[13] Institute of Vertebrate Biology, v.v.i, Medical Zoology Laboratory, Academy of Sciences of the Czech Republic; | |
[14] Institute of Zoology, Slovak Academy of Sciences; | |
关键词: Anaplasma phagocytophilum; Ticks; Ixodidae; Molecular epidemiology; Transmission dynamics; Network analysis; | |
DOI : 10.1186/s13071-019-3583-8 | |
来源: DOAJ |
【 摘 要 】
Abstract Background Anaplasma phagocytophilum is currently regarded as a single species. However, molecular studies indicate that it can be subdivided into ecotypes, each with distinct but overlapping transmission cycle. Here, we evaluate the interactions between and within clusters of haplotypes of the bacterium isolated from vertebrates and ticks, using phylogenetic and network-based methods. Methods The presence of A. phagocytophilum DNA was determined in ticks and vertebrate tissue samples. A fragment of the groEl gene was amplified and sequenced from qPCR-positive lysates. Additional groEl sequences from ticks and vertebrate reservoirs were obtained from GenBank and through literature searches, resulting in a dataset consisting of 1623 A. phagocytophilum field isolates. Phylogenetic analyses were used to infer clusters of haplotypes and to assess phylogenetic clustering of A. phagocytophilum in vertebrates or ticks. Network-based methods were used to resolve host-vector interactions and their relative importance in the segregating communities of haplotypes. Results Phylogenetic analyses resulted in 199 haplotypes within eight network-derived clusters, which were allocated to four ecotypes. The interactions of haplotypes between ticks, vertebrates and geographical origin, were visualized and quantified from networks. A high number of haplotypes were recorded in the tick Ixodes ricinus. Communities of A. phagocytophilum recorded from Korea, Japan, Far Eastern Russia, as well as those associated with rodents had no links with the larger set of isolates associated with I. ricinus, suggesting different evolutionary pressures. Rodents appeared to have a range of haplotypes associated with either Ixodes trianguliceps or Ixodes persulcatus and Ixodes pavlovskyi. Haplotypes found in rodents in Russia had low similarities with those recorded in rodents in other regions and shaped separate communities. Conclusions The groEl gene fragment of A. phagocytophilum provides information about spatial segregation and associations of haplotypes to particular vector-host interactions. Further research is needed to understand the circulation of this bacterium in the gap between Europe and Asia before the overview of the speciation features of this bacterium is complete. Environmental traits may also play a role in the evolution of A. phagocytophilum in ecotypes through yet unknown relationships.
【 授权许可】
Unknown