期刊论文详细信息
Electronic Journal of Qualitative Theory of Differential Equations | 卷:2020 |
Existence of weak solutions for quasilinear Schrödinger equations with a parameter | |
Hongwei Yang1  Caisheng Chen2  Hongwang Yu3  Yunfeng Wei4  | |
[1] College of Mathematics and System Science, Shandong University of Science and Technology, Qingdao, P.R. China; | |
[2] College of Science, Hohai University, Nanjing, P.R. China; | |
[3] College of Science, Nanjing Audit University, Nanjing, P.R. China; | |
[4] Nanjing Audit University, Nanjing, P.R. China; | |
关键词: quasilinear schrödinger equation; variational method; mountain-pass theorem; $p$-laplace operator; | |
DOI : 10.14232/ejqtde.2020.1.41 | |
来源: DOAJ |
【 摘 要 】
In this paper, we study the following quasilinear Schrödinger equation of the form\begin{equation*}-\Delta_{p}u+V(x)|u|^{p-2}u-\left[\Delta_{p}(1+u^{2})^{\alpha/2}\right]\frac{\alpha u}{2(1+u^{2})^{(2-\alpha)/2}}=k(u),\qquad x\in \mathbb{R}^{N},\end{equation*}where $p$-Laplace operator $\Delta_{p}u={\rm div}(|\nabla u|^{p-2}\nabla u)\ (1
【 授权许可】
Unknown