期刊论文详细信息
Electronic Journal of Differential Equations 卷:2010
Persistence of solutions to nonlinear evolution equations in weighted Sobolev spaces
关键词: Schrodinger equation;    Korteweg-de Vries equation;    global well-posed;    persistence property;    weighted Sobolev spaces;   
DOI  :  
来源: DOAJ
【 摘 要 】

In this article, we prove that the initial value problem associated withthe Korteweg-de Vries equation is well-posed in weightedSobolev spaces $mathcal{X}^{s,heta}$,for $s geq 2heta ge 2$ and the initial value problemassociated with the nonlinear Schrodinger equation iswell-posed in weighted Sobolev spaces $mathcal{X}^{s,heta}$,for $s geq heta geq 1$. Persistence property has beenproved by approximation of the solutions and usinga priori estimates.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次