Frontiers in Cell and Developmental Biology | 卷:9 |
Metabolic Signature-Based Subtypes May Pave Novel Ways for Low-Grade Glioma Prognosis and Therapy | |
Kangli Xu1  Tiesong Zhang1  Jun Gu1  Feng Wang1  Chenjie Gu1  Ganglei Li1  Renya Zhan1  Kaiyuan Huang1  Yu Zhu1  Jian Shen1  Zhanxiong Wu2  | |
[1] Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; | |
[2] School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China; | |
关键词: low-grade glioma; metabolic signature; subtypes; prognosis; immune characteristics; | |
DOI : 10.3389/fcell.2021.755776 | |
来源: DOAJ |
【 摘 要 】
Metabolic signatures are frequently observed in cancer and are starting to be recognized as important regulators for tumor progression and therapy. Because metabolism genes are involved in tumor initiation and progression, little is known about the metabolic genomic profiles in low-grade glioma (LGG). Here, we applied bioinformatics analysis to determine the metabolic characteristics of patients with LGG from the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). We also performed the ConsensusClusterPlus, the CIBERSORT algorithm, the Estimate software, the R package “GSVA,” and TIDE to comprehensively describe and compare the characteristic difference between three metabolic subtypes. The R package WGCNA helped us to identify co-expression modules with associated metabolic subtypes. We found that LGG patients were classified into three subtypes based on 113 metabolic characteristics. MC1 patients had poor prognoses and MC3 patients obtained longer survival times. The different metabolic subtypes had different metabolic and immune characteristics, and may have different response patterns to immunotherapy. Based on the metabolic subtype, different patterns were exhibited that reflected the characteristics of each subtype. We also identified eight potential genetic markers associated with the characteristic index of metabolic subtypes. In conclusion, a comprehensive understanding of metabolism associated characteristics and classifications may improve clinical outcomes for LGG.
【 授权许可】
Unknown