Ural Mathematical Journal | 卷:4 |
EVALUATION OF SOME NON-ELEMENTARY INTEGRALS INVOLVING SINE, COSINE, EXPONENTIAL AND LOGARITHMIC INTEGRALS: PART II | |
Victor Nijimbere1  | |
[1] School of Mathematics and Statistics, Carleton University, Ottawa, Ontario; | |
关键词: Non-elementary integrals; Sine integral; Cosine integral; Exponential integral; Logarithmic integral; Hyperbolic sine integral; Hyperbolic cosine integral; Hypergeometric functions; | |
DOI : 10.15826/umj.2018.1.004 | |
来源: DOAJ |
【 摘 要 】
The non-elementary integrals \(\mbox{Si}_{\beta,\alpha}=\int [\sin{(\lambda x^\beta)}/(\lambda x^\alpha)] dx,\) \(\beta\ge1,\) \(\alpha>\beta+1\) and \(\mbox{Ci}_{\beta,\alpha}=\int [\cos{(\lambda x^\beta)}/(\lambda x^\alpha)] dx,\) \(\beta\ge1,\) \(\alpha>2\beta+1,\) where \(\{\beta,\alpha\}\in\mathbb{R},\) are evaluated in terms of the hypergeometric function \(_{2}F_3\). On the other hand, the exponential integral \(\mbox{Ei}_{\beta,\alpha}=\int (e^{\lambda x^\beta}/x^\alpha) dx,\) \(\beta\ge1,\) \(\alpha>\beta+1\) is expressed in terms of \(_{2}F_2\). The method used to evaluate these integrals consists of expanding the integrand as a Taylor series and integrating the series term by term.
【 授权许可】
Unknown