期刊论文详细信息
Energy Conversion and Management: X 卷:12
Effect of activation function in modeling the nexus between carbon tax, CO2 emissions, and gas-fired power plant parameters
Bamidele Victor Ayodele1  Yudi Fernando1  Ozavize Freida Ayodele2  Siti Indati Mustapa3 
[1] Corresponding authors.;
[2] Department of Accounting and Finance, Faculty of Business and Management, UCSI University Kuala Lumpur, Malaysia;
[3] Institute of Energy Policy and Research, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia;
关键词: Activated function;    Carbon tax;    Emission trading;    Perceptron neural network;    CO2 emissions;   
DOI  :  
来源: DOAJ
【 摘 要 】

Huge emissions of carbon dioxide (CO2) from the utilization of fossil fuel for power generation has significantly contributed to global warming. In view of this, technological pathways have been initiated to mitigate the effect of CO2 emissions through capture, storage, and utilization. Besides, there is an increasing acceptance of carbon tax which is levied in the proportion of carbon emissions from the utilization of fossil fuel. In this study, the nexus between carbon tax, equivalent CO2 emissions from the gas-fired power plant, natural gas flow rate, and air-to-fuel ratio was modeled using a perceptron neural network. The effect of various combinations of identity, hyperbolic tangent, and sigmoid activation functions at the hidden and outer layer of the neural network on the performance of the models was investigated. The various network configurations were trained using the Levenberg-Marquardt algorithm with the network errors backpropagated to enhance the performance. The optimized networks consist of three input units, 15 hidden neurons, and one output unit. The network performance in modeling the carbon tax prediction resulted in R2 of 0.999, 0.999, 0.999, 0.998, and 0.999 for model 1, model 2, model 3, model 4, and model 5, respectively which is an indication that the calculated carbon tax was strongly correlated with the predicted values. The prediction errors of 0.019, 0.009, 0.002, 0.016, 0.002 obtained from model 1, model 2, model 3, model 4, and model 5, respectively revealed the robustness of the models in predicting the carbon tax with minimum error. Among the various configurations investigated, the perceptron neural network configured with hyperbolic tangent and sigmoid activation function at the hidden and outer layers, as well as the configuration with sigmoid activation functions at the hidden and outer layers, offer the best performance. The sensitivity analysis shows that the flow rate of the natural gas had the most significant effect on the predicted carbon tax.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:3次