期刊论文详细信息
EURASIP Journal on Audio, Speech, and Music Processing
Text-to-speech system for low-resource language using cross-lingual transfer learning and data augmentation
Norihide Kitaoka1  Kengo Ohta2  Zolzaya Byambadorj3  Ryota Nishimura3  Altangerel Ayush4 
[1] Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Japan;Department of Creative Technology Engineering, National Institute of Technology, Anan College, Tokushima, Japan;Department of Information Science and Intelligent Systems, Tokushima University, Tokushima, Japan;Department of Information Technology, Mongolian University of Science and Technology, Ulaanbaatar, Mongolia;
关键词: Speech synthesis;    Text to speech;    Transfer learning;    Data augmentation;    Low-resource language;   
DOI  :  10.1186/s13636-021-00225-4
来源: Springer
PDF
【 摘 要 】

Deep learning techniques are currently being applied in automated text-to-speech (TTS) systems, resulting in significant improvements in performance. However, these methods require large amounts of text-speech paired data for model training, and collecting this data is costly. Therefore, in this paper, we propose a single-speaker TTS system containing both a spectrogram prediction network and a neural vocoder for the target language, using only 30 min of target language text-speech paired data for training. We evaluate three approaches for training the spectrogram prediction models of our TTS system, which produce mel-spectrograms from the input phoneme sequence: (1) cross-lingual transfer learning, (2) data augmentation, and (3) a combination of the previous two methods. In the cross-lingual transfer learning method, we used two high-resource language datasets, English (24 h) and Japanese (10 h). We also used 30 min of target language data for training in all three approaches, and for generating the augmented data used for training in methods 2 and 3. We found that using both cross-lingual transfer learning and augmented data during training resulted in the most natural synthesized target speech output. We also compare single-speaker and multi-speaker training methods, using sequential and simultaneous training, respectively. The multi-speaker models were found to be more effective for constructing a single-speaker, low-resource TTS model. In addition, we trained two Parallel WaveGAN (PWG) neural vocoders, one using 13 h of our augmented data with 30 min of target language data and one using the entire 12 h of the original target language dataset. Our subjective AB preference test indicated that the neural vocoder trained with augmented data achieved almost the same perceived speech quality as the vocoder trained with the entire target language dataset. Overall, we found that our proposed TTS system consisting of a spectrogram prediction network and a PWG neural vocoder was able to achieve reasonable performance using only 30 min of target language training data. We also found that by using 3 h of target language data, for training the model and for generating augmented data, our proposed TTS model was able to achieve performance very similar to that of the baseline model, which was trained with 12 h of target language data.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202203049166458ZK.pdf 6041KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:2次