期刊论文详细信息
Malaria Journal
Preclinical evaluation of strasseriolides A–D, potent antiplasmodial macrolides isolated from Strasseria geniculata CF-247,251
Scott Tanghe1  Ana Rodriguez1  Francisca Vicente2  Fernando Reyes2  Victor González-Menéndez2  Ignacio Pérez-Victoria2  Frederick Annang2  José Pérez del Palacio2  Juan Cantizani2  Olga Genilloud2  Nuria de Pedro Montejo2  Caridad Díaz2  Guiomar Pérez-Moreno3  Dolores González-Pacanowska3  Luis M. Ruiz-Pérez3  Paula Sánchez3 
[1] Department of Microbiology, New York University School of Medicine, 10016, New York, NY, USA;Fundación MEDINA, Avda. del Conocimiento 34, 18016, Armilla, Granada, Spain;Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas (CSIC), Avda. del Conocimiento 17, 18016, Armilla, Granada, Spain;
关键词: Natural products;    Macrolides;    Malaria;    Drug development;    Preclinical evaluation;    Metabolic stability;    Pharmacokinetics;    In vivo efficacy;    Drug–drug interaction;    Cardiotoxicity;   
DOI  :  10.1186/s12936-021-03993-8
来源: Springer
PDF
【 摘 要 】

BackgroundMalaria is a global health problem for which novel therapeutic compounds are needed. To this end, a recently published novel family of antiplasmodial macrolides, strasseriolides A–D, was herein subjected to in vivo efficacy studies and preclinical evaluation in order to identify the most promising candidate(s) for further development.MethodsPreclinical evaluation of strasseriolides A–D was performed by MTT-based cytotoxicity assay in THLE-2 (CRL-2706) liver cells, cardiotoxicity screening using the FluxOR™ potassium assay in hERG expressed HEK cells, LC–MS-based analysis of drug-drug interaction involving CYP3A4, CYP2D6 and CYP2C9 isoforms inhibition and metabolic stability assays in human liver microsomes. Mice in vivo toxicity studies were also accomplished by i.v. administration of the compounds (vehicle: 0.5% HPMC, 0.5% Tween 80, 0.5% Benzyl alcohol) in mice at 25 mg/kg dosage. Plasma were prepared from mice blood samples obtained at different time points (over a 24-h period), and analysed by LC-MS to quantify compounds. The most promising compounds, strasseriolides C and D, were subjected to a preliminary in vivo efficacy study in which transgenic GFP-luciferase expressing Plasmodium berghei strain ANKA-infected Swiss Webster female mice (n = 4–5) were treated 48 h post-infection with an i.p. dosage of strasseriolide C at 50 mg/kg and strasseriolide D at 22 mg/kg for four days after which luciferase activity was quantified on day 5 in an IVIS® Lumina II imager.ResultsStrasseriolides A–D showed no cytotoxicity, no carditoxicity and no drug-drug interaction problems in vitro with varying intrinsic clearance (CLint). Only strasseriolide B was highly toxic to mice in vivo (even at 1 mg/kg i.v. dosage) and, therefore, discontinued in further in vivo studies. Strasseriolide D showed statistically significant activity in vivo giving rise to lower parasitaemia levels (70% lower) compared to the controls treated with vehicle.ConclusionsAnimal efficacy and preclinical evaluation of the recently discovered potent antiplasmodial macrolides, strasseriolides A–D, led to the identification of strasseriolide D as the most promising compound for further development. Future studies dealing on structure optimization, formulation and establishment of optimal in vivo dosage explorations of this novel compound class could enhance their clinical potency and allow for progress to later stages of the developmental pipeline.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202203047548932ZK.pdf 982KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:15次