期刊论文详细信息
Computational Visual Media
Towards natural object-based image recoloring
Zhe Zhu1  Meng-Yao Cui2  Shao-Ping Lu2  Yulu Yang2 
[1] Department of Radiology, Duke University, 27705, Durham, NC, USA;TKLNDST, CS, Nankai University, 300350, Tianjin, China;
关键词: color editing;    object recognition;    color palette representation;    natural color;   
DOI  :  10.1007/s41095-021-0245-5
来源: Springer
PDF
【 摘 要 】

Existing color editing algorithms enable users to edit the colors in an image according to their own aesthetics. Unlike artists who have an accurate grasp of color, ordinary users are inexperienced in color selection and matching, and allowing non-professional users to edit colors arbitrarily may lead to unrealistic editing results. To address this issue, we introduce a palette-based approach for realistic object-level image recoloring. Our data-driven approach consists of an offline learning part that learns the color distributions for different objects in the real world, and an online recoloring part that first recognizes the object category, and then recommends appropriate realistic candidate colors learned in the offline step for that category. We also provide an intuitive user interface for efficient color manipulation. After color selection, image matting is performed to ensure smoothness of the object boundary. Comprehensive evaluation on various color editing examples demonstrates that our approach outperforms existing state-of-the-art color editing algorithms.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202203046435949ZK.pdf 6251KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次