期刊论文详细信息
Journal of Big Data
Opinion mining for national security: techniques, domain applications, challenges and research opportunities
Sazali Sukardi1  Khairul Khalil Ishak2  Noor Afiza Mat Razali3  Nor Asiakin Hasbullah3  Suzaimah Ramli3  Norulzahrah Mohd Zainuddin3  Nur Atiqah Malizan3  Muslihah Wook3 
[1] CyberSecurity Malaysia, Selangor, Malaysia;Management and Science University, Selangor, Malaysia;National Defence University of Malaysia, Kuala Lumpur, Malaysia;
关键词: Opinion mining;    Sentiment analysis;    National security;    Machine learning;    Lexicon-based approach;    Kansei approach;   
DOI  :  10.1186/s40537-021-00536-5
来源: Springer
PDF
【 摘 要 】

BackgroundOpinion mining, or sentiment analysis, is a field in Natural Language Processing (NLP). It extracts people’s thoughts, including assessments, attitudes, and emotions toward individuals, topics, and events. The task is technically challenging but incredibly useful. With the explosive growth of the digital platform in cyberspace, such as blogs and social networks, individuals and organisations are increasingly utilising public opinion for their decision-making. In recent years, significant research concerning mining people’s sentiments based on text in cyberspace using opinion mining has been explored. Researchers have applied numerous opinions mining techniques, including machine learning and lexicon-based approach to analyse and classify people’s sentiments based on a text and discuss the existing gap. Thus, it creates a research opportunity for other researchers to investigate and propose improved methods and new domain applications to fill the gap.MethodsIn this paper, a structured literature review has been done by considering 122 articles to examine all relevant research accomplished in the field of opinion mining application and the suggested Kansei approach to solve the challenges that occur in mining sentiments based on text in cyberspace. Five different platforms database were systematically searched between 2015 and 2021: ACM (Association for Computing Machinery), IEEE (Advancing Technology for Humanity), SCIENCE DIRECT, SpringerLink, and SCOPUS.ResultsThis study analyses various techniques of opinion mining as well as the Kansei approach that will help to enhance techniques in mining people’s sentiment and emotion in cyberspace. Most of the study addressed methods including machine learning, lexicon-based approach, hybrid approach, and Kansei approach in mining the sentiment and emotion based on text. The possible societal impacts of the current opinion mining technique, including machine learning and the Kansei approach, along with major trends and challenges, are highlighted.ConclusionVarious applications of opinion mining techniques in mining people’s sentiment and emotion according to the objective of the research, used method, dataset, summarized in this study. This study serves as a theoretical analysis of the opinion mining method complemented by the Kansei approach in classifying people’s sentiments based on text in cyberspace. Kansei approach can measure people’s impressions using artefacts based on senses including sight, feeling and cognition reported precise results for the assessment of human emotion. Therefore, this research suggests that the Kansei approach should be a complementary factor including in the development of a dictionary focusing on emotion in the national security domain. Also, this theoretical analysis will act as a reference to researchers regarding the Kansei approach as one of the techniques to improve hybrid approaches in opinion mining.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202203042572103ZK.pdf 1418KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:26次