期刊论文详细信息
BMC Cancer
Four differentially expressed genes can predict prognosis and microenvironment immune infiltration in lung cancer: a study based on data from the GEO
Jingwei Xia1  Xiaoyue Du1  Guoren Zhou1  Weiwei Peng1  Bo Shen1  Shaodi Wen1  Yuzhong Chen1 
[1] The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China;
关键词: Lung cancer;    Immune infiltrate;    Prognosis;    Immune-related genes;    Gene Expression Omnibus;   
DOI  :  10.1186/s12885-022-09296-8
来源: Springer
PDF
【 摘 要 】

BackgroundLung cancer is among the major diseases threatening human health. Although the immune response plays an important role in tumor development, its exact mechanisms are unclear.Materials and methodsHere, we used CIBERSORT and ESTIMATE algorithms to determine the proportion of tumor-infiltrating immune cells (TICs) as well as the number of immune and mesenchymal components from the data of 474 lung cancer patients from the Gene Expression Omnibus database. And we used data from The Cancer Genome Atlas database (TCGA) for validation.ResultsWe observed that immune, stromal, and assessment scores were only somewhat related to survival with no statistically significant differences. Further investigations revealed these scores to be associated with different pathology types. GO and KEGG analyses of differentially expressed genes revealed that they were strongly associated with immunity in lung cancer. In order to determine whether the signaling pathways identified by GO and KEGG signaling pathway enrichment analyses were up- or down-regulated, we performed a gene set enrichment analysis using the entire matrix of differentially expressed genes. We found that signaling pathways involved in hallmark allograft rejection, hallmark apical junction, hallmark interferon gamma response, the hallmark P53 pathway, and the hallmark TNF-α signaling via NF-ĸB were up-regulated in the high-ESTIMATE-score group. CIBERSORT analysis for the proportion of TICs revealed that different immune cells were positively correlated with the ESTIMATE score. Cox regression analysis of the differentially expressed genes revealed that CPA3, C15orf48, FCGR1B, and GNG4 were associated with patient prognosis. A prognostic model was constructed wherein patients with high-risk scores had a worse prognosis (p < 0.001 using the log-rank test). The Area Under Curve (AUC)value for the risk model in predicting the survival was 0.666. The validation set C index was 0.631 (95% CI: 0.580–0.652). The AUC for the risk formula in the validation set was 0.560 that confirmed predictivity of the signature.ConclusionWe found that immune-related gene expression models could predict patient prognosis. Moreover, high- and low-ESTIMATE-score groups had different types of immune cell infiltration.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202202181863902ZK.pdf 6948KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:7次