期刊论文详细信息
The European Physical Journal C
Chern–Simons invariants on hyperbolic manifolds and topological quantum field theories
A. A. Bytsenko1  A. E. Gonçalves1  L. Bonora2 
[1] Departamento de Física, Universidade Estadual de Londrina, Caixa Postal 6001, Londrina-Paraná, Brazil;International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, 34136, Trieste, Italy;INFN, Sezione di Trieste, Italy;
关键词: Dirac Operator;    Chern Character;    Adiabatic Limit;    Simons Theory;    Flat Connection;   
DOI  :  10.1140/epjc/s10052-016-4468-z
来源: Springer
PDF
【 摘 要 】

We derive formulas for the classical Chern–Simons invariant of irreducible SU(n)-flat connections on negatively curved locally symmetric three-manifolds. We determine the condition for which the theory remains consistent (with basic physical principles). We show that a connection between holomorphic values of Selberg-type functions at point zero, associated with R-torsion of the flat bundle, and twisted Dirac operators acting on negatively curved manifolds, can be interpreted by means of the Chern–Simons invariant. On the basis of the Labastida–Mariño–Ooguri–Vafa conjecture we analyze a representation of the Chern–Simons quantum partition function (as a generating series of quantum group invariants) in the form of an infinite product weighted by S-functions and Selberg-type functions. We consider the case of links and a knot and use the Rogers approach to discover certain symmetry and modular form identities.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202112163341483ZK.pdf 563KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:2次