期刊论文详细信息
Advanced Modeling and Simulation in Engineering Sciences
Evaluation of POD based surrogate models of fields resulting from nonlinear FEM simulations
Anton H. van den Boogaard1  Jos Havinga1  Boukje M. de Gooijer1  Hubert J. M. Geijselaers1 
[1] Chair of Nonlinear Solid Mechanics, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands;
关键词: Metamodel;    Multiphysical field;    Preprocessing;    Proper Orthogonal Decomposition;    Radial Basis Function;   
DOI  :  10.1186/s40323-021-00210-8
来源: Springer
PDF
【 摘 要 】

Surrogate modelling is a powerful tool to replace computationally expensive nonlinear numerical simulations, with fast representations thereof, for inverse analysis, model-based control or optimization. For some problems, it is required that the surrogate model describes a complete output field. To construct such surrogate models, proper orthogonal decomposition (POD) can be used to reduce the dimensionality of the output data. The accuracy of the surrogate models strongly depends on the (pre)processing actions that are used to prepare the data for the dimensionality reduction. In this work, POD-based surrogate models with Radial Basis Function interpolation are used to model high-dimensional FE data fields. The effect of (pre)processing methods on the accuracy of the result field is systematically investigated. Different existing methods for surrogate model construction are compared with a novel method. Special attention is given to data fields consisting of several physical meanings, e.g. displacement, strain and stress. A distinction is made between the errors due to truncation and due to interpolation of the data. It is found that scaling the data per physical part substantially increases the accuracy of the surrogate model.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202112046914442ZK.pdf 1943KB PDF download
  文献评价指标  
  下载次数:16次 浏览次数:7次