期刊论文详细信息
BMC Medical Informatics and Decision Making
Quantifying the impact of addressing data challenges in prediction of length of stay
Thomas Schmidt1  Amin Naemi1  Uffe Kock Wiil1  Ali Ebrahimi1  Marjan Mansourvar2 
[1] Center for Health Informatics and Technology, The Maersk Mc-Kinney Institute, University of Southern Denmark, Odense, Denmark;Department of Mathematics and Computer Science (IMADA), University of Southern Denmark, Odense, Denmark;
关键词: Length of stay;    LOS;    Classification;    Regression;    Machine learning;    Vital signs;    Health informatics;    Emergency department;    Data skewness;   
DOI  :  10.1186/s12911-021-01660-1
来源: Springer
PDF
【 摘 要 】

BackgroundPrediction of length of stay (LOS) at admission time can provide physicians and nurses insight into the illness severity of patients and aid them in avoiding adverse events and clinical deterioration. It also assists hospitals with more effectively managing their resources and manpower.MethodsIn this field of research, there are some important challenges, such as missing values and LOS data skewness. Moreover, various studies use a binary classification which puts a wide range of patients with different conditions into one category. To address these shortcomings, first multivariate imputation techniques are applied to fill incomplete records, then two proper resampling techniques, namely Borderline-SMOTE and SMOGN, are applied to address data skewness in the classification and regression domains, respectively. Finally, machine learning (ML) techniques including neural networks, extreme gradient boosting, random forest, support vector machine, and decision tree are implemented for both approaches to predict LOS of patients admitted to the Emergency Department of Odense University Hospital between June 2018 and April 2019. The ML models are developed based on data obtained from patients at admission time, including pulse rate, arterial blood oxygen saturation, respiratory rate, systolic blood pressure, triage category, arrival ICD-10 codes, age, and gender.ResultsThe performance of predictive models before and after addressing missing values and data skewness is evaluated using four evaluation metrics namely receiver operating characteristic, area under the curve (AUC), R-squared score (R2), and normalized root mean square error (NRMSE). Results show that the performance of predictive models is improved on average by 15.75% for AUC, 32.19% for R2 score, and 11.32% for NRMSE after addressing the mentioned challenges. Moreover, our results indicate that there is a relationship between the missing values rate, data skewness, and illness severity of patients, so it is clinically essential to take incomplete records of patients into account and apply proper solutions for interpolation of missing values.ConclusionWe propose a new method comprised of three stages: missing values imputation, data skewness handling, and building predictive models based on classification and regression approaches. Our results indicated that addressing these challenges in a proper way enhanced the performance of models significantly, which led to a more valid prediction of LOS.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202112042402219ZK.pdf 2311KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:15次