Parasites & Vectors | |
Highly rearranged mitochondrial genome in Falcolipeurus lice (Phthiraptera: Philopteridae) from endangered eagles | |
Ya Tu1  Yuan-Ping Deng2  Yu Zhang2  Yi-Tian Fu2  Yu Nie2  Guo-Hua Liu2  Wei Wang3  | |
[1] Beijing Wildlife Rescue and Rehabilitation Center, 101300, Beijing, China;Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, 410128, Changsha, Hunan, China;School of Science and Engineering, GeneCology Research Centre, Animal Research Centre, University of the Sunshine Coast, 4556, Sippy Downs, QLD, Australia; | |
关键词: Bird lice; Mitochondrial genome; Gene rearrangement; Phylogenetic analyses; | |
DOI : 10.1186/s13071-021-04776-5 | |
来源: Springer | |
【 摘 要 】
BackgroundFragmented mitochondrial (mt) genomes and extensive mt gene rearrangements have been frequently reported from parasitic lice (Insecta: Phthiraptera). However, relatively little is known about the mt genomes from the family Philopteridae, the most species-rich family within the suborder Ischnocera.MethodsHerein, we use next-generation sequencing to decode the mt genome of Falcolipeurus suturalis and compare it with the mt genome of F. quadripustulatus. Phylogenetic relationships within the family Philopteridae were inferred from the concatenated 13 protein-coding genes of the two Falcolipeurus lice and members of the family Philopteridae using Bayesian inference (BI) and maximum likelihood (ML) methods.ResultsThe complete mt genome of F. suturalis is a circular, double-stranded DNA molecule 16,659 bp in size that contains 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and three non-coding regions. The gene order of the F. suturalis mt genome is rearranged relative to that of F. quadripustulatus, and is radically different from both other louse species and the putative ancestral insect. Phylogenetic analyses revealed clear genetic distinctiveness between F. suturalis and F. quadripustulatus (Bayesian posterior probabilities = 1.0 and bootstrapping frequencies = 100), and that the genus Falcolipeurus is sister to the genus Ibidoecus (Bayesian posterior probabilities = 1.0 and bootstrapping frequencies = 100).ConclusionsThese datasets help to better understand gene rearrangements in lice and the phylogenetic position of Falcolipeurus and provide useful genetic markers for systematic studies of bird lice.Graphical Abstract
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202112040365876ZK.pdf | 4479KB | download |