期刊论文详细信息
Frontiers in Pediatrics
Predicting Flow Rate Escalation for Pediatric Patients on High Flow Nasal Cannula Using Machine Learning
James Fackler1  Jules P. Bergmann1  Anthony A. Sochet2  Joseph L. Greenstein3  Kirby D. Gong3  Raimond L. Winslow3  Joshua A. Krachman3  Jina Park3  Indranuj Gangan3  Christopher T. Le3  Ruijing Zhang3  Jessica A. Patricoski4 
[1] Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States;Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States;Division of Pediatric Critical Care Medicine, Department of Pediatrics, Johns Hopkins All Children's Hospital, St Petersburg, FL, United States;Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States;Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States;Division of Health Sciences Informatics, Johns Hopkins University School of Medicine, Baltimore, MD, United States;
关键词: high flow nasal cannula;    flow rate escalation;    pediatric critical care;    non-response;    machine learning;    acute respiratory failure;   
DOI  :  10.3389/fped.2021.734753
来源: Frontiers
PDF
【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202112033137144ZK.pdf 1641KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:8次