期刊论文详细信息
Journal of High Energy Physics
Combining outlier analysis algorithms to identify new physics at the LHC
Adam Leinweber1  Martin White1  Marco Santoni1  Paul Jackson1  Riley Patrick1  Luc Hendriks2  Sydney Otten3  Sascha Caron4  Roberto Ruiz de Austri5  Melissa van Beekveld6 
[1] ARC Centre of Excellence for Dark Matter Particle Physics, University of Adelaide, 5005, North Terrace, SA, Australia;High Energy Physics, IMAPP, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, Netherlands;High Energy Physics, IMAPP, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, Netherlands;Gravitation and Astroparticle Physics Amsterdam (GRAPPA), Science Park 904, 1098 XH, Amsterdam, Netherlands;High Energy Physics, IMAPP, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, Netherlands;Nikhef, Science Park 105, 1098 XG, Amsterdam, Netherlands;Instituto de Física Corpuscular, IFIC-UV/CSIC, Valencia, Spain;Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory, 20 Parks Road, OX1 3PU, Oxford, U.K.;High Energy Physics, IMAPP, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, Netherlands;Nikhef, Science Park 105, 1098 XG, Amsterdam, Netherlands;
关键词: Phenomenological Models;    Supersymmetry Phenomenology;   
DOI  :  10.1007/JHEP09(2021)024
来源: Springer
PDF
【 摘 要 】

The lack of evidence for new physics at the Large Hadron Collider so far has prompted the development of model-independent search techniques. In this study, we compare the anomaly scores of a variety of anomaly detection techniques: an isolation forest, a Gaussian mixture model, a static autoencoder, and a β-variational autoencoder (VAE), where we define the reconstruction loss of the latter as a weighted combination of regression and classification terms. We apply these algorithms to the 4-vectors of simulated LHC data, but also investigate the performance when the non-VAE algorithms are applied to the latent space variables created by the VAE. In addition, we assess the performance when the anomaly scores of these algorithms are combined in various ways. Using super- symmetric benchmark points, we find that the logical AND combination of the anomaly scores yielded from algorithms trained in the latent space of the VAE is the most effective discriminator of all methods tested.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202110141204813ZK.pdf 5216KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:7次