eLife | |
Physiological and motion signatures in static and time-varying functional connectivity and their subject identifiability | |
Georgios D Mitsis1  Alba Xifra-Porxas2  Michalis Kassinopoulos2  | |
[1] Bioengineering Department, McGill University, Montréal, Canada;Graduate Program in Biological and Biomedical Engineering, McGill University, Montréal, Canada; | |
关键词: functional connectivity; physiological processes; fMRI; resting-state; head motion; time-varying functional connectivity; Human; | |
DOI : 10.7554/eLife.62324 | |
来源: eLife Sciences Publications, Ltd | |
【 摘 要 】
Human brain connectivity yields significant potential as a noninvasive biomarker. Several studies have used fMRI-based connectivity fingerprinting to characterize individual patterns of brain activity. However, it is not clear whether these patterns mainly reflect neural activity or the effect of physiological and motion processes. To answer this question, we capitalize on a large data sample from the Human Connectome Project and rigorously investigate the contribution of the aforementioned processes on functional connectivity (FC) and time-varying FC, as well as their contribution to subject identifiability. We find that head motion, as well as heart rate and breathing fluctuations, induce artifactual connectivity within distinct resting-state networks and that they correlate with recurrent patterns in time-varying FC. Even though the spatiotemporal signatures of these processes yield above-chance levels in subject identifiability, removing their effects at the preprocessing stage improves identifiability, suggesting a neural component underpinning the inter-individual differences in connectivity.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202109289589059ZK.pdf | 3287KB | download |