eLife | |
Hypoxia triggers collective aerotactic migration in Dictyostelium discoideum | |
Ivan Mikaelian1  Philippe Gonzalo2  Satomi Hirose3  Kenichi Funamoto4  Mete Demircigil5  Vincent Calvez5  Christophe Anjard6  Jean-Paul Rieu6  Olivier Cochet-Escartin6  Blandine Allais6  | |
[1] Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, INSERM 1052, CNRS 5286, Université Lyon 1, Université de Lyon, Lyon, France;Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, INSERM 1052, CNRS 5286, Université Lyon 1, Université de Lyon, Lyon, France;Laboratoire de Biochimie et Pharmacologie, Faculté de médecine de Saint-Etienne, CHU de Saint-Etienne, Saint-Etienne, France;Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan;Institute of Fluid Science, Tohoku University, Sendai, Japan;Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan;Institute of Fluid Science, Tohoku University, Sendai, Japan;Graduate School of Engineering, Tohoku University, Sendai, Japan;Institut Camille Jordan, UMR5208, Université Lyon 1-CNRS, Université de Lyon, Villeurbanne, France;Institut Lumière Matière, UMR5306, Université Lyon 1-CNRS, Université de Lyon, Villeurbanne, France; | |
关键词: hypoxia; self-generated gradients; chemotaxis; collective migration; oxygen sensing; Dictyostelium; | |
DOI : 10.7554/eLife.64731 | |
来源: eLife Sciences Publications, Ltd | |
【 摘 要 】
Using a self-generated hypoxic assay, we show that the amoeba Dictyostelium discoideum displays a remarkable collective aerotactic behavior. When a cell colony is covered, cells quickly consume the available oxygen (O2) and form a dense ring moving outwards at constant speed and density. To decipher this collective process, we combined two technological developments: porphyrin-based O2 -sensing films and microfluidic O2 gradient generators. We showed that Dictyostelium cells exhibit aerotactic and aerokinetic response in a low range of O2 concentration indicative of a very efficient detection mechanism. Cell behaviors under self-generated or imposed O2 gradients were modeled using an in silico cellular Potts model built on experimental observations. This computational model was complemented with a parsimonious ‘Go or Grow’ partial differential equation (PDE) model. In both models, we found that the collective migration of a dense ring can be explained by the interplay between cell division and the modulation of aerotaxis.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202109289469703ZK.pdf | 5555KB | download |