期刊论文详细信息
Frontiers in Zoology
Noise constrains the evolution of call frequency contours in flowing water frogs: a comparative analysis in two clades
Yezhong Tang1  Jianguo Cui1  Longhui Zhao2  Juan C. Santos3  Jianghong Ran4  Jichao Wang5 
[1] CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, Sichuan, China;CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, Sichuan, China;Ministry of Education Key Laboratory for Tropical Plant and Animal Ecology, College of Life Sciences, Hainan Normal University, 571158, Haikou, Hainan, China;Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, China;Department of Biological Sciences, St. John’s University, 11439, Queens, NY, USA;Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, China;Ministry of Education Key Laboratory for Tropical Plant and Animal Ecology, College of Life Sciences, Hainan Normal University, 571158, Haikou, Hainan, China;
关键词: Acoustic signals;    Anurans;    Ecological selection;    Frequency-contour complexity;    Noise;   
DOI  :  10.1186/s12983-021-00423-y
来源: Springer
PDF
【 摘 要 】

BackgroundThe acoustic adaptation hypothesis (AAH) states that signals should evolve towards an optimal transmission of the intended information from senders to intended receivers given the environmental constraints of the medium that they traverse. To date, most AAH studies have focused on the effect of stratified vegetation on signal propagation. These studies, based on the AAH, predict that acoustic signals should experience less attenuation and degradation where habitats are less acoustically complex. Here, we explored this effect by including an environmental noise dimension to test some AAH predictions in two clades of widespread amphibians (Bufonidae and Ranidae) that actively use acoustic signals for communication. By using data from 106 species in these clades, we focused on the characterization of the differences in dominant frequency (DF) and frequency contour (i.e., frequency modulation [FM] and harmonic performances) of mating calls and compared them between species that inhabit flowing-water or still-water environments.ResultsAfter including temperature, body size, habitat type and phylogenetic relationships, we found that DF differences among species were explained mostly by body size and habitat structure. We also showed that species living in lentic habitats tend to have advertisement calls characterized by well-defined FM and harmonics. Likewise, our results suggest that flowing-water habitats can constrain the evolutionary trajectories of the frequency-contour traits of advertisement calls in these anurans.ConclusionsOur results may support AAH predictions in frogs that vocalize in noisy habitats because flowing-water environments often produce persistent ambient noise. For instance, these anurans tend to generate vocalizations with less well-defined FM and harmonic traits. These findings may help us understand how noise in the environment can influence natural selection as it shapes acoustic signals in affected species.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202109176724991ZK.pdf 2351KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:6次