BMC Microbiology | |
Insights into the endophytic bacterial community comparison and their potential role in the dimorphic seeds of halophyte Suaeda glauca | |
article | |
Wang, Hongfei1  Narsing Rao, Manik Prabhu2  Gao, Yanli1  Li, Xinyang1  Gao, Rui3  Xie, Yuanguo2  Li, Qiuli1  Li, Wenjun2  | |
[1] The Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Science, Liaoning Normal University;State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Science, Sun Yat-Sen University;Dandong Forestry and Grassland Development Service Center;State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences | |
关键词: Endophytic bacterial community; High throughput sequencing; Dimorphic seeds; Suaeda glauca; | |
DOI : 10.1186/s12866-021-02206-1 | |
学科分类:放射科、核医学、医学影像 | |
来源: BioMed Central | |
【 摘 要 】
Seed dimorphism has been thought to be a bet-hedging strategy that helps plants survive in the disturbed environment and has been widely studied for its ecological adaptation mechanism. Many studies showed that seed-associated microorganisms play an important role in enhancing plant fitness, but information regarding endophytic bacteria associated with dimorphic seeds is limited. This study explores the influence of seed coat structure and seed phytochemical properties on the community composition and diversity of endophytic bacteria of dimorphic seeds of Suaeda glauca. In this study, we used 16S rRNA high-throughput gene sequencing method to compare the community composition and bacterial diversity between brown and black seeds of Suaeda glauca. A significant difference was observed in seed coat structure and phytochemical properties between brown and black seeds of S. glauca. Total 9 phyla, 13 classes, 31 orders, 53 families, 102 genera were identified in the dimorphic seeds. The dominant phyla were Proteobacteria, Firmicutes, and Actinobacteria. The results showed that seed dimorphism had little impact on the diversity and richness of endophytic bacterial communities but significantly differs in the relative abundance of the bacterial community between brown and black seeds. At the phylum level, Actinobacteria tend to be enriched significantly in brown seeds. At the genus level, Rhodococcus, Ralstonia, Pelomonas and Bradyrhizobium tend to be enriched significantly in brown seeds, while Marinilactibacillus was mainly found in black seeds. Besides, brown seeds harbored a large number of bacteria with plant-growth-promoting traits, whereas black seeds presented bacteria with enzyme activities (i.e., pectinase, cellulolytic and xylanolytic activities). The endophytic bacterial community compositions were significantly different between dimorphic seeds of Suaeda glauca, and play an important role in the ecological adaptation of dimorphic seeds by performing different biological function roles. The endophytic bacterial communities of the dimorphic seeds may be influenced mainly by the seed coat structureand partly by the seed phytochemical characteristics. These findings provide valuable information for better understanding of the ecological adaptation strategy of dimorphic seeds in the disturbed environment.
【 授权许可】
CC BY|CC0
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202108140002838ZK.pdf | 1989KB | download |