Journal of High Energy Physics | |
Boosting background suppression in the NEXT experiment through Richardson-Lucy deconvolution | |
Z.-E. Meziani1  C. Adams1  K. Hafidi1  K. Bailey1  S. Cebrián2  M. Losada3  Y. Rodríguez García3  R. M. Gutiérrez3  L. Labarga4  A. A. Denisenko5  F. Foss5  C. Newhouse5  P. Thapa5  T. T. Vuong5  J. Hauptman6  R. Webb7  J. T. White7  C. Stanford8  J. Ho8  S. Gosh8  R. Guenette8  J. Haefner8  T. Contreras8  J. Martín-Albo9  K. Woodruff1,10  A. D. McDonald1,10  B. J. P. Jones1,10  D. R. Nygren1,10  L. Rogers1,10  N. Byrnes1,10  A. Laing1,10  R. González1,11  J. Torrent1,11  E. Oblak1,11  M. Odriozola-Gimeno1,11  J. M. Benlloch-Rodríguez1,11  J. Generowicz1,11  H. Almazán1,11  M. Martínez-Vara1,12  L. Ripoll1,13  A. I. Aranburu1,14  B. Aparicio1,14  P. Lebrun1,15  A. Para1,15  J. J. Gómez-Cadenas1,16  I. Rivilla1,16  P. Ferrario1,16  F. Monrabal1,16  F. P. Cossío1,17  Z. Freixa1,18  J. F. C. A. Veloso1,19  C. D. R Azevedo1,19  A. L. Ferreira1,19  G. Díaz2,20  D. González-Díaz2,20  M. Kekic2,20  J. A. Hernando Morata2,20  M. Querol2,21  P. Novella2,21  J. V. Carrión2,21  J. Muñoz Vidal2,21  C. Romo-Luque2,21  J. Díaz2,21  A. Usón2,21  S. Cárcel2,21  M. Sorel2,21  N. Yahlali2,21  N. López-March2,21  A. Martínez2,21  J. Renner2,21  B. Palmeiro2,22  F. Ballester2,23  V. Herrero2,23  R. Esteve2,23  F. J. Mora2,23  J. F. Toledo2,23  J. Rodríguez2,23  V. Álvarez2,23  J. M. R. Teixeira2,24  C. A. O. Henriques2,24  J. M. F. dos Santos2,24  R. D. P. Mano2,24  L. M. P. Fernandes2,24  E. D. C. Freitas2,24  C. M. B. Monteiro2,24  J. Escada2,25  F. I. G. M. Borges2,25  C. A. N. Conde2,25  F. P. Santos2,25  J. Pérez2,26  B. Romeo2,27  A. Goldschmidt2,28  C. Rogero2,29  P. Herrero3,30  E. Church3,31  I. J. Arnquist3,31  G. Martínez-Lema3,32  A. Simón3,32  A. B. Redwine3,32  L. Arazi3,32  R. Felkai3,33  Y. Ifergan3,34  R. Weiss-Babai3,35  | |
[1] Argonne National Laboratory, Lemont, Illinois, U.S.A.;Centro de Astropartículas y Física de Altas Energías (CAPA), Universidad de Zaragoza, Zaragoza, Spain;Centro de Investigación en Ciencias Básicas y Aplicadas, Universidad Antonio Nariño, Bogotá, Colombia;Departamento de Física Teórica, Universidad Autónoma de Madrid, Madrid, Spain;Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, U.S.A.;Department of Physics and Astronomy, Iowa State University, Ames, Iowa, U.S.A.;Department of Physics and Astronomy, Texas A&M University, College Station, Texas, U.S.A.;Department of Physics, Harvard University, Cambridge, Massachusetts, U.S.A.;Department of Physics, Harvard University, Cambridge, Massachusetts, U.S.A.;Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Paterna, Spain;Department of Physics, University of Texas at Arlington, Arlington, Texas, U.S.A.;Donostia International Physics Center (DIPC), Donostia-San Sebastián, Spain;Donostia International Physics Center (DIPC), Donostia-San Sebastián, Spain;Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Paterna, Spain;Escola Politècnica Superior, Universitat de Girona, Girona, Spain;Faculty of Chemistry, University of the Basque Country (UPV/EHU), Manuel de Lardizabal 3, 20018, Donostia-San Sebastián, Spain;Fermi National Accelerator Laboratory, Batavia, Illinois, U.S.A.;Ikerbasque (Basque Foundation for Science), Bilbao, Spain;Donostia International Physics Center (DIPC), Donostia-San Sebastián, Spain;Ikerbasque (Basque Foundation for Science), Bilbao, Spain;Faculty of Chemistry, University of the Basque Country (UPV/EHU), Manuel de Lardizabal 3, 20018, Donostia-San Sebastián, Spain;Ikerbasque (Basque Foundation for Science), Bilbao, Spain;Soreq Nuclear Research Center, Yavne, Israel;Institute of Nanostructures, Nanomodelling and Nanofabrication (i3N), Universidade de Aveiro, Aveiro, Portugal;Instituto Gallego de Física de Altas Energías, Universidade de Santiago de Compostela, Santiago de Compostela, Spain;Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Paterna, Spain;Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Paterna, Spain;Instituto Gallego de Física de Altas Energías, Universidade de Santiago de Compostela, Santiago de Compostela, Spain;Instituto de Instrumentación para Imagen Molecular (I3M), CSIC and Univ. Politècnica de València, Valencia, Spain;LIBPhys, Universidade de Coimbra, Coimbra, Portugal;LIP, Departamento de Física, Universidade de Coimbra, Coimbra, Portugal;Laboratorio Subterráneo de Canfranc, Canfranc-Estación, Spain;Laboratorio Subterráneo de Canfranc, Canfranc-Estación, Spain;Donostia International Physics Center (DIPC), Donostia-San Sebastián, Spain;Lawrence Berkeley National Laboratory, Berkeley, California, U.S.A.;Materials Physics Center (CFM), CSIC & University of the Basque Country (UPV/EHU), Manuel de Lardizabal 5, 20018, Donostia-San Sebastián, Spain;Materials Physics Center (CFM), CSIC & University of the Basque Country (UPV/EHU), Manuel de Lardizabal 5, 20018, Donostia-San Sebastián, Spain;Donostia International Physics Center (DIPC), Donostia-San Sebastián, Spain;Pacific Northwest National Laboratory, Richland, Washington, U.S.A.;Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel;Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel;Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Paterna, Spain;Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel;Nuclear Research Center Negev, Beer-Sheva, Israel;Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel;Soreq Nuclear Research Center, Yavne, Israel; | |
关键词: Dark Matter and Double Beta Decay (experiments); | |
DOI : 10.1007/JHEP07(2021)146 | |
来源: Springer | |
【 摘 要 】
Next-generation neutrinoless double beta decay experiments aim for half-life sensitivities of ∼ 1027 yr, requiring suppressing backgrounds to < 1 count/tonne/yr. For this, any extra background rejection handle, beyond excellent energy resolution and the use of extremely radiopure materials, is of utmost importance. The NEXT experiment exploits differences in the spatial ionization patterns of double beta decay and single-electron events to discriminate signal from background. While the former display two Bragg peak dense ionization regions at the opposite ends of the track, the latter typically have only one such feature. Thus, comparing the energies at the track extremes provides an additional rejection tool. The unique combination of the topology-based background discrimination and excellent energy resolution (1% FWHM at the Q-value of the decay) is the distinguishing feature of NEXT. Previous studies demonstrated a topological background rejection factor of ∼ 5 when reconstructing electron-positron pairs in the 208Tl 1.6 MeV double escape peak (with Compton events as background), recorded in the NEXT-White demonstrator at the Laboratorio Subterráneo de Canfranc, with 72% signal efficiency. This was recently improved through the use of a deep convolutional neural network to yield a background rejection factor of ∼ 10 with 65% signal efficiency. Here, we present a new reconstruction method, based on the Richardson-Lucy deconvolution algorithm, which allows reversing the blurring induced by electron diffusion and electroluminescence light production in the NEXT TPC. The new method yields highly refined 3D images of reconstructed events, and, as a result, significantly improves the topological background discrimination. When applied to real-data 1.6 MeV e−e+ pairs, it leads to a background rejection factor of 27 at 57% signal efficiency.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202108129165451ZK.pdf | 11796KB | download |