Journal of NeuroEngineering and Rehabilitation | |
Automatically evaluating balance using machine learning and data from a single inertial measurement unit | |
Fahad Kamran1  Jenna Wiens1  Wendy Carender2  Jonathan Zwier3  Tian Bao3  Kathleen H. Sienko3  Kathryn Harrold3  | |
[1] Computer Science and Engineering, University of Michigan, Ann Arbor, USA;Department of Otolaryngology, Michigan Medicine, Ann Arbor, USA;Mechanical Engineering, University of Michigan, Ann Arbor, USA; | |
关键词: Balance training; Wearable sensors; Machine learning; Telerehabilitation; | |
DOI : 10.1186/s12984-021-00894-4 | |
来源: Springer | |
【 摘 要 】
BackgroundRecently, machine learning techniques have been applied to data collected from inertial measurement units to automatically assess balance, but rely on hand-engineered features. We explore the utility of machine learning to automatically extract important features from inertial measurement unit data for balance assessment.FindingsTen participants with balance concerns performed multiple balance exercises in a laboratory setting while wearing an inertial measurement unit on their lower back. Physical therapists watched video recordings of participants performing the exercises and rated balance on a 5-point scale. We trained machine learning models using different representations of the unprocessed inertial measurement unit data to estimate physical therapist ratings. On a held-out test set, we compared these learned models to one another, to participants’ self-assessments of balance, and to models trained using hand-engineered features. Utilizing the unprocessed kinematic data from the inertial measurement unit provided significant improvements over both self-assessments and models using hand-engineered features (AUROC of 0.806 vs. 0.768, 0.665).ConclusionsUnprocessed data from an inertial measurement unit used as input to a machine learning model produced accurate estimates of balance performance. The ability to learn from unprocessed data presents a potentially generalizable approach for assessing balance without the need for labor-intensive feature engineering, while maintaining comparable model performance.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202108121639888ZK.pdf | 967KB | download |