BMC Cancer | |
Molecular and cellular characterization of two patient-derived ductal carcinoma in situ (DCIS) cell lines, ETCC-006 and ETCC-010 | |
Oza Zaheed1  Kellie Dean1  Magdalina Derlipanska1  Julia Samson2  | |
[1] School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, T12XF62, Cork, Ireland;School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, T12XF62, Cork, Ireland;Present address: EFOR, 25-29 Rue Anatole France, 92300, Levallois-Perret, France; | |
关键词: Ductal carcinoma in situ (DCIS); Breast carcinoma cell lines; qRT-PCR; RNA sequencing (RNAseq); Proliferation; Migration; Anchorage-independent growth; Epithelial to mesenchymal transition; Cell signalling pathways; Cell cycle; | |
DOI : 10.1186/s12885-021-08511-2 | |
来源: Springer | |
【 摘 要 】
BackgroundCurrently it is unclear how in situ breast cancer progresses to invasive disease; therefore, a better understanding of the events that occur during the transition to invasive carcinoma is warranted. Here we have conducted a detailed molecular and cellular characterization of two, patient-derived, ductal carcinoma in situ (DCIS) cell lines, ETCC-006 and ETCC-010.MethodsHuman DCIS cell lines, ETCC-006 and ETCC-010, were compared against a panel of cell lines including the immortalized, breast epithelial cell line, MCF10A, breast cancer cell lines, MCF7 and MDA-MB-231, and another DCIS line, MCF10DCIS.com. Cell morphology, hormone and HER2/ERBB2 receptor status, cell proliferation, survival, migration, anchorage-independent growth, indicators of EMT, cell signalling pathways and cell cycle proteins were examined using immunostaining, immunoblots, and quantitative, reverse transcriptase PCR (qRT-PCR), along with clonogenic, wound-closure and soft agar assays. RNA sequencing (RNAseq) was used to provide a transcriptomic profile.ResultsETCC-006 and ETCC-010 cells displayed notable differences to another DCIS cell line, MCF10DCIS.com, in terms of morphology, steroid-receptor/HER status and markers of EMT. The ETCC cell lines lack ER/PR and HER, form colonies in clonogenic assays, have migratory capacity and are capable of anchorage-independent growth. Despite being isogenic, less than 30% of differentially expressed transcripts overlapped between the two lines, with enrichment in pathways involving receptor tyrosine kinases and DNA replication/cell cycle programs and in gene sets responsible for extracellular matrix organisation and ion transport.ConclusionsFor the first time, we provide a molecular and cellular characterization of two, patient-derived DCIS cell lines, ETCC-006 and ETCC-010, facilitating future investigations into the molecular basis of DCIS to invasive ductal carcinoma transition.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202108112461848ZK.pdf | 4026KB | download |