期刊论文详细信息
Fire Ecology
Changing wildfire, changing forests: the effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA
article
Halofsky, Jessica E.1  Peterson, David L.2  Harvey, Brian J.2 
[1] US Department of Agriculture, Pacific Northwest Research Station, Olympia Forestry Sciences Lab;School of Environmental and Forest Sciences, College of the Environment, University of Washington
关键词: adaptation;    climate change;    disturbance regimes;    drought;    fire regime;    Pacific Northwest;    regeneration;    vegetation;   
DOI  :  10.1186/s42408-019-0062-8
学科分类:植物学
来源: Springer
PDF
【 摘 要 】

Wildfires in the Pacific Northwest (Washington, Oregon, Idaho, and western Montana, USA) have been immense in recent years, capturing the attention of resource managers, fire scientists, and the general public. This paper synthesizes understanding of the potential effects of changing climate and fire regimes on Pacific Northwest forests, including effects on disturbance and stress interactions, forest structure and composition, and post-fire ecological processes. We frame this information in a risk assessment context, and conclude with management implications and future research needs. Large and severe fires in the Pacific Northwest are associated with warm and dry conditions, and such conditions will likely occur with increasing frequency in a warming climate. According to projections based on historical records, current trends, and simulation modeling, protracted warmer and drier conditions will drive lower fuel moisture and longer fire seasons in the future, likely increasing the frequency and extent of fires compared to the twentieth century. Interactions between fire and other disturbances, such as drought and insect outbreaks, are likely to be the primary drivers of ecosystem change in a warming climate. Reburns are also likely to occur more frequently with warming and drought, with potential effects on tree regeneration and species composition. Hotter, drier sites may be particularly at risk for regeneration failures. Resource managers will likely be unable to affect the total area burned by fire, as this trend is driven strongly by climate. However, fuel treatments, when implemented in a spatially strategic manner, can help to decrease fire intensity and severity and improve forest resilience to fire, insects, and drought. Where fuel treatments are less effective (wetter, high-elevation, and coastal forests), managers may consider implementing fuel breaks around high-value resources. When and where post-fire planting is an option, planting different genetic stock than has been used in the past may increase seedling survival. Planting seedlings on cooler, wetter microsites may also help to increase survival. In the driest topographic locations, managers may need to consider where they will try to forestall change and where they will allow conversions to vegetation other than what is currently dominant.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202108090004575ZK.pdf 6231KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:0次