期刊论文详细信息
Fixexd point theory and applications | |
Some perturbation results of Kirchhoff type equations via Morse theory | |
article | |
Sun, Mingzheng1  Chen, Yutong2  Tian, Rushun2  | |
[1] College of Sciences, North China University of Technology;School of Mathematical Sciences, Capital Normal University | |
关键词: Kirchhoff equations; Nontrivial solutions; Morse theory; | |
DOI : 10.1186/s13663-020-00677-x | |
来源: SpringerOpen | |
【 摘 要 】
In this paper, we consider the following Kirchhoff type equation:$$ \textstyle\begin{cases} - (a+b \int _{\varOmega } \vert \nabla u \vert ^{2}\,dx ) \Delta u= f(x,u) &\text{in } \varOmega , \\ u=0 &\text{on } \partial \varOmega , \end{cases} $$ where$a,b>0$ are constants and$\varOmega \subset \mathbb{R}^{N}$ ( $N=1,2,3$ ) is a bounded domain with smooth boundary ∂Ω. By applying Morse theory, we obtain some existence and multiplicity results of nontrivial solutions for either a or b being sufficiently small.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202108090000123ZK.pdf | 1629KB | download |