期刊论文详细信息
Advances in Difference Equations | |
Global bifurcation and constant sign solutions of discrete boundary value problem involving p -Laplacian | |
article | |
Ye, Fumei1  | |
[1] Department of Mathematics, Northwest Normal University | |
关键词: Discrete p -Laplacian; Principal eigenvalue; Unilateral global bifurcation; Constant sign solutions; | |
DOI : 10.1186/s13662-021-03309-9 | |
学科分类:航空航天科学 | |
来源: SpringerOpen | |
【 摘 要 】
We study the unilateral global bifurcation result for the one-dimensional discrete p-Laplacian problem$$ \textstyle\begin{cases} -\Delta [\varphi _{p}(\Delta u(t-1))]=\lambda a(t)\varphi _{p}(u(t))+g(t,u(t), \lambda ),\quad t\in [1,T+1]_{Z}, \\ \Delta u(0)=u(T+2)=0, \end{cases} $$ where$\Delta u(t)=u(t+1)-u(t)$ is a forward difference operator,$\varphi _{p}(s)=|s|^{p-2}s$ ( $11$ be an integer, Z denote the integer set for$m, n\in Z$ with$m0$ for$s\neq 0$ .
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202108070004854ZK.pdf | 1880KB | download |