期刊论文详细信息
| Advances in Difference Equations | |
| \(L^{p}-L^{q}\) -Maximal regularity of the Van Wijngaarden–Eringen equation in a cylindrical domain | |
| article | |
| Lizama, Carlos1  Murillo-Arcila, Marina2  | |
| [1] Departamento de Matemática y Ciencia de la Computación, Universidad de Santiago de Chile;Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València | |
| 关键词: Maximal regularity; Van Wijngaarden–Eringen equation; Degenerate evolution equations; R -boundedness; | |
| DOI : 10.1186/s13662-020-03054-5 | |
| 学科分类:航空航天科学 | |
| 来源: SpringerOpen | |
PDF
|
|
【 摘 要 】
We consider the maximal regularity problem for a PDE of linear acoustics, named the Van Wijngaarden–Eringen equation, that models the propagation of linear acoustic waves in isothermal bubbly liquids, wherein the bubbles are of uniform radius. If the dimensionless bubble radius is greater than one, we prove that the inhomogeneous version of the Van Wijngaarden–Eringen equation, in a cylindrical domain, admits maximal regularity in Lebesgue spaces. Our methods are based on the theory of operator-valued Fourier multipliers.
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202108070004494ZK.pdf | 1617KB |
PDF