| Advances in Difference Equations | |
| Existence of solutions for integral boundary value problems of singular Hadamard-type fractional differential equations on infinite interval | |
| article | |
| Liu, Weiwei1  Liu, Lishan1  Wu, Yonghong2  | |
| [1] School of Mathematics Sciences, Qufu Normal University;Department of Mathematics and Statistics, Curtin University | |
| 关键词: Hadamard-type fractional differential equation; Carathéodory condition; Infinite interval; Fixed point theory; | |
| DOI : 10.1186/s13662-020-02726-6 | |
| 学科分类:航空航天科学 | |
| 来源: SpringerOpen | |
PDF
|
|
【 摘 要 】
We consider the existence of solutions for the following Hadamard-type fractional differential equations:$$ \textstyle\begin{cases} {}^{H}D^{\alpha }u(t)+q(t)f(t,u(t), {}^{H}D^{\beta _{1}}u(t),{}^{H}D^{ \beta _{2}}u(t))=0,\quad 1< t< +\infty , \\ u(1)=0, \\ {}^{H}D^{\alpha -2}u(1)=\int ^{+\infty }_{1}g_{1}(s)u(s)\frac{ds}{s}, \\ {}^{H}D^{\alpha -1}u(+\infty )=\int ^{+\infty }_{1}g_{2}(s)u(s) \frac{ds}{s}, \end{cases} $$ where$2<\alpha \leq 3$ ,$0<\beta _{1}\leq \alpha -2<\beta _{2}\leq \alpha -1$ ,$f:J \times \mathbb{R}^{3}\rightarrow \mathbb{R}$ satisfies the q-Carathéodory condition,$q,g_{1},g_{2}:J\rightarrow \mathbb{R}^{+}$ are nonnegative, where$J=[1,+\infty )$ . Nonlinear term f is dependent on the fractional derivative of lower order$\beta _{1}$ ,$\beta _{2}$ , which creates additional complexity to verify the existence of solutions. The singularity occurring in our problem is associated with${}^{H}D^{\beta _{2}}u\in C(1,+\infty )$ at the left endpoint$t=1$ (if$\beta _{2}<\alpha -1$ ).
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202108070004212ZK.pdf | 1642KB |
PDF