| Advances in Difference Equations | |
| Existence and uniqueness of positive solutions for a new class of coupled system via fractional derivatives | |
| article | |
| Afshari, Hojjat1  Sajjadmanesh, Mojtaba1  Baleanu, Dumitru2  | |
| [1] Department of Mathematics, Faculty of Basic Science, University of Bonab;Department of Mathematics, Cankaya University;Institute of Space Sciences | |
| 关键词: Fractional differential equation; Mixed monotone operator; Normal cone; Coupled system; | |
| DOI : 10.1186/s13662-020-02568-2 | |
| 学科分类:航空航天科学 | |
| 来源: SpringerOpen | |
PDF
|
|
【 摘 要 】
In this paper we study the existence of unique positive solutions for the following coupled system: $$\begin{aligned} \textstyle\begin{cases} D_{0^{+}}^{\alpha }x(\tau )+f_{1}(\tau ,x(\tau ),D_{0^{+}}^{\eta }x( \tau ))+g_{1}(\tau ,y(\tau ))=0, \\ D_{0^{+}}^{\beta }y(\tau )+f_{2}(\tau ,y(\tau ),D_{0^{+}}^{\gamma }y( \tau ))+g_{2}(\tau ,x(\tau ))=0, \\ \tau \in (0,1),\qquad n-13$ and $1\leq \gamma \leq \xi \leq n-2$, $1\leq \eta \leq \zeta \leq n-2$, $f_{1},f_{2}:[0,1]\times \mathbb{R^{+}}\times \mathbb{R^{+}} \rightarrow \mathbb{R^{+}}$, $g_{1},g_{2}:[0,1]\times \mathbb{R^{+}}\rightarrow \mathbb{R^{+}}$ and $k_{1},k_{2}:\mathbb{R^{+}}\rightarrow \mathbb{R^{+}}$ are continuous functions, $D_{0^{+}}^{\alpha }$ and $D_{0^{+}}^{\beta }$ stand for the Riemann–Liouville derivatives. An illustrative example is given to show the effectiveness of theoretical results.
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202108070003975ZK.pdf | 1603KB |
PDF