期刊论文详细信息
Advances in Difference Equations
Studies on the basic reproduction number in stochastic epidemic models with random perturbations
Soledad Torres1  Andrés Ríos-Gutiérrez2  Viswanathan Arunachalam2 
[1] CIMFAV, Universidad de Valparaiso, Valparaiso, Chile;Department of Statistics, Universidad Nacional de Colombia, Bogotá, Colombia;
关键词: Basic reproduction number;    Random perturbations;    Brownian motion;    Stability analysis;   
DOI  :  10.1186/s13662-021-03445-2
来源: Springer
PDF
【 摘 要 】

In this paper, we discuss the basic reproduction number of stochastic epidemic models with random perturbations. We define the basic reproduction number in epidemic models by using the integral of a function or survival function. We study the systems of stochastic differential equations for SIR, SIS, and SEIR models and their stability analysis. Some results on deterministic epidemic models are also obtained. We give the numerical conditions for which the disease-free equilibrium point is asymptotically stable.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202107224660363ZK.pdf 2195KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:3次